岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 3442.doi: 10.12108/yxyqc.20220104
易志凤1,2, 张尚锋1,2, 王雅宁1,2, 徐恩泽1, 赵韶华1, 王玉瑶1
YI Zhifeng1,2, ZHANG Shangfeng1,2, WANG Yaning1,2, XU Enze1, ZHAO Shaohua1, WANG Yuyao1
摘要: 正确认识曲流河点坝砂体的形态和规模,对井间砂体连通认识、流体运移路径分析及剩余油高效精准挖潜具有重要意义。以黄河源区现代白河为例,利用ArcGIS软件对白河卫星影像的31个典型点坝砂体进行矢量化,建立点坝砂体规模参数的基础测量数据表,并通过坡降划分选取典型点坝曲流段进行刻画,在曲率划分的基础上探讨了点坝砂体规模与河道宽度的定量关系。结果表明:坡降越大,则河道宽度越小,曲率越小;点坝长度、点坝宽度与河道宽度两两之间呈正相关关系,且在不同曲率下,其相关性有所差异,当曲率k小于2时,点坝长度与河道宽度的相关系数为0.790,点坝宽度与点坝长度的相关系数为0.812,点坝宽度与河道宽度的相关系数为0.414;当k为2~2.5时,点坝长度与河道宽度的相关系数为0.709,点坝宽度与点坝长度的相关系数为0.883,点坝宽度与河道宽度的相关系数为0.841。该研究结果对曲流河储层定量表征具有一定的借鉴意义。
中图分类号:
[1] 薛培华.河流点坝相储层模式概论.北京:石油工业出版社, 1991:1-20. XUE P H. An introduction to reservoir models of point bar facies. Beijing:Petroleum Industry Press, 1991:1-20. [2] 贾爱林. 中国储层地质模型20年. 石油学报, 2011, 32(1):181-188. JIA A L. Research achievements on reservoir geological modeling of China in the past two decades.Acta Petrolei Sinica, 2011, 32(1):181-188. [3] 张建兴, 林承焰, 张宪国, 等.基于储层构型与油藏数值模拟的点坝储层剩余油分布研究.岩性油气藏, 2017, 29(4):146-153. ZHANG J X, LIN C Y, ZHANG X G, et al. Remaining oil distribution of point bar reservoir based on reservoir architecture and reservoir numerical simulation.Lithologic Reservoirs, 2017, 29(4):146-153. [4] SCHUMM S A. Sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 1963, 74(9):1089-1100. [5] LEOPOLD L. Fluvial processes in geomorphology. Dover:Dover Publications, 1964:15-27. [6] SCHUMM S A. Fluvial paleochannels//RIGBY J K, HAMBLIN W K. Recognition of ancient sedimentary environment. SEPM Special Publications 16, 1972:98-107. [7] LORENZ J C, HEINZE D M, CLARK J A, et al. Determination of widths of meander-belt sandstone reservoirs from vertical downhole data, Mesaverde Group, Piceance Creek Basin, Colorado.AAPG Bulletin, 1985, 69(5):710-721. [8] NICOLL T J, HICKIN E J. Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology, 2010, 116:37-47. [9] 岳大力, 吴胜和, 刘建民.曲流河点坝地下储层构型精细解剖方法.石油学报, 2007, 28(4):99-103. YUE D L, WU S H, LIU J M. An accurate method for anatomizing architecture of subsurface reservoir in point bar of meandering river. Acta Petrolei Sinica, 2007, 28(4):99-103. [10] 李宇鹏, 吴胜和, 岳大力.现代曲流河道宽度与点坝长度的定量关系.大庆石油地质与开发, 2008, 27(6):19-22. LI Y P, WU S H, YUE D L. Quantitative relation of the channel width and point-bar length of modern meandering river. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(6):19-22. [11] 石书缘, 胡素云, 冯文杰, 等. 基于Google Earth软件建立曲流河地质知识库.沉积学报, 2012, 30(5):869-878. SHI S Y, HU S Y, FENG W J, et al. Building geological knowledge database based on Google Earth software. Acta Sedimentologica Sinica, 2012, 30(5):869-878. [12] 范广娟, 李新宇, 赵跃军, 等.基于卫星图像的点坝参数定量关系研究与应用.数学的实践与认识, 2014, 44(3):62-67. FAN G J, LI X Y, ZHAO Y J, et al. Point bar parameters' quantitative relationship research and application based on satellite Images. Mathematics in Practice and Theory, 2014, 44(3):62-67. [13] 王海峰, 范廷恩, 宋来明, 等.高弯度曲流河砂体规模定量表征研究.沉积学报, 2017, 35(2):279-289. WANG H F, FAN T E, SONG L M, et al. Quantitative characterization study on sand body scale in high sinuosity meandering river. Acta Sedimentologica Sinica, 2017, 35(2):279-289. [14] LEEDER M R. Fluviatile fining-upwards cycles and the magnitude of palaeochannels. Geological Magazine, 1973, 110(3):265-276. [15] 刘振坤, 吴胜和, 王晖.现代曲流河点坝定量模式探讨.地质与资源, 2012, 21(3):337-340. LIU Z K, WU S H, WANG H. Study on the quantitative model for point bar of modern meandering river. Geology and Resources, 2012, 21(3):337-340. [16] 乔辉, 王志章, 李莉, 等.基于卫星影像建立曲流河地质知识库及应用.现代地质, 2015, 29(6):1444-1453. QIAO H, WANG Z Z, LI L, et al. Application of geological knowledge database of modern meandering river based on satellite image. Geoscience, 2015, 29(6):1444-1453. [17] 王冬冬, 宋亚开, 郭宇鹏.基于Google Earth软件对曲流河点坝的研究.中国锰业, 2017, 35(2):141-143. WANG D D, SONG Y K, GUO Y P. A Google Earth-based study on point bar of meandering river.China's Manganese Industry, 2017, 35(2):141-143. [18] 李少华, 张昌民, 林克湘, 等.储层建模中几种原型模型的建立.沉积与特提斯地质, 2004, 24(3):102-107. LI S H, ZHANG C M, LIN K X, et al. The construction of prototype models in reservoir modeling. Sedimentary Geology and Tethyan Geology, 2004, 24(3):102-107. [19] 周银邦, 吴胜和, 计秉玉, 等.曲流河储层构型表征研究进展. 地球科学进展, 2011, 26(7):695-702. ZHOU Y B, WU S H, JI B Y, et al. Research progress on the characterization of fluvial reservoir architecture. Advances in Earth Science, 2011, 26(7):695-702. [20] WILLIS B J, TANG H. Three-dimensional connectivity of point bar deposits. Journal of Sedimentary Research, 2010, 80:440-454. [21] AMOS KJ, JEFF P P, BRADBURY W, et al. The influence of bend amplitude and planform morphology on sedimentation in submarine channels. Marine and Petroleum Geology, 2010, 27:1431-1447. [22] DONSELAAR M E, OVEREEM I. Connectivity of fluvial point bar deposits:An example from the Miocene Huesca fluvial fan, Ebro Basin, Spain. AAPG Bulletin, 2008, 92(9):1109-1129. [23] 李少华, 汗日明, 张昌民, 等.结合露头信息建立储层地质模型.天然气地球科学, 2006, 17(3):374-377. LI S H, HAN R M, ZHANG C M, et al. Integration of outcrop in reservoir modeling. Natural Gas Geoscience, 2006, 17(3):374-377. [24] 赵资乐.黄河上游黑河、白河流域水沙规律.甘肃水利水电技术, 2005, 41(4):336-338. ZHAO Z L. Water and sediment laws of Heihe and Baihe river basins in Upper Yellow River. Gansu Water Resources and Hydropower Technology, 2005, 41(4):336-338. [25] 黄汲清, 陈炳蔚.中国及邻区特提斯海的演化.北京:科学出版社, 1987:52-54. HUANG J Q, CHEN B W. The evolution of the Tethys in China and adjacent regions. Beijing:Science Press, 1987:52-54. [26] 王云飞, 王苏民, 薛滨, 等.黄河袭夺若尔盖古湖时代的沉积学依据.科学通报, 1995, 40(8):723-725. WANG Y F, WANG S M, XUE B, et al. Sedimentological basis of the Yellow River's attack and capture of the ancient lake in Zoige. Chinese Science Bulletin, 1995, 40(8):723-725. [27] 汤韬, 李志威.黄河源区弯曲河群分布与形态及边界条件.水利水电科技进展, 2020, 40(1):10-16. TANG T, LI Z W. Distribution, planform and boundary conditions of meandering river groups in source region of Yellow River. Advances in Science and Technology of Water Resources, 2020, 40(1):10-16. [28] 杨玥, 李志威, 胡旭跃, 等.黄河源白河与黑河下游凸岸点边滩形态与变化规律.泥沙研究, 2021, 46(1):50-56. YANG Y, LI Z W, HU X Y, et al. Morphological characteristics and processes of point bars in the lower White and Black Rivers of the Yellow River Source region. Journal of Sediment Research, 2021, 46(1):50-56. [29] 李志威, 王兆印, 李艳富, 等.黄河源区典型弯曲河流的几何形态特征.泥沙研究, 2012(4):11-17. LI Z W, WANG Z Y, LI Y F, et al. Planform geometry characteristics of typical meandering rivers in Yellow River Source. Journal of Sediment Research, 2012(4):11-17. [30] 李志威, 王兆印, 潘保柱.牛轭湖形成机理与长期演变规律. 泥沙研究, 2012(5):16-25. LI Z W, WANG Z Y, PAN B Z. Formation mechanism and longterm evolution of oxbow lakes. Journal of Sediment Research, 2012(5):16-25. [31] 殷丹.ArcGIS在河湖管理范围划界工作中的应用.水土保持应用技术, 2020, 194(2):43-44. YIN D. Application of ArcGIS in delimitation of river and lake management scope.Technology of Soil and Water Conservation, 2020, 194(2):43-44. [32] 汤国安, 杨昕.ArcGIS地理信息系统空间分析实验教程. 北京:科学出版社, 2012:1-5. TANG G A, YANG X. ArcGIS geographic information system spatial analysis experiment course. Beijing:Science Press, 2012:1-5. [33] 钱宁.关于河流分类及成因问题的讨论.地理学报, 1985, 40(1):1-10. QING N. On the classification and causes of formation of different channel patterns. Acta Geographica Sinica, 1985, 40(1):1-10. [34] 倪晋仁, 王随继, 王光谦.现代冲积河流的河型空间转化模式探讨.沉积学报, 2000, 18(1):1-6. NI J R, WANG S J, WANG G Q. Spatial variations of channel patterns. Acta Sedimentologica Sinica, 2000, 18(1):1-6. [35] 李志威, 刘晶, 胡世雄, 等.中国冲积大河的河型分布与成因. 水利水电科技进展, 2017, 37(2):7-13. LI Z W, LIU J, HU S X, et al. Distribution and formation of river patterns of large alluvial rivers in China. Advances in Science and Technology of Water Resources, 2017, 37(2):7-13. [36] 钱宁, 张仁, 周志德. 河床演变学. 北京:科学出版社, 1987:167-178. QIAN N, ZHANG R, ZHOU Z D. Riverbed evolution. Beijing:Science Press, 1987:167-178. [37] 王雷, 刘国涛, 龙涛, 等.一种曲流河点坝体内部侧积体描述方法.岩性油气藏, 2008, 20(4):132-134. WANG L, LIU G T, LONG T, et al. Description method of lateral accretion within point bar of meandering river. Lithologic Reservoirs, 2008, 20(4):132-134. [38] 张昌民, 尹太举, 李少华, 等.基准面旋回对河道砂体几何形态的控制作用:以枣园油田孔一段枣Ⅱ-Ⅲ油组为例.岩性油气藏, 2007, 19(4):9-12. ZHANG C M, YIN T J, LI S H, et al. Control of base level cycles on channel sand geometry:A case study of Zao Ⅱ-Ⅲ reservoirs, Zaoyuan Oilfield. Lithologic Reservoirs, 2007, 19(4):9-12. |
[1] | 范蕊, 刘卉, 杨沛广, 孙星, 马辉, 郝菲, 张珊珊. 阿曼盆地A区白垩系泥岩充填型碳酸盐岩溶蚀沟谷识别技术[J]. 岩性油气藏, 2023, 35(6): 72-81. |
[2] | 徐中波, 汪利兵, 申春生, 陈铭阳, 甘立琴. 渤海蓬莱19-3油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107. |
[3] | 张昌民, 张祥辉, ADRIAN J. Hartley, 冯文杰, 尹太举, 尹艳树, 朱锐. 分支河流体系分类初探[J]. 岩性油气藏, 2023, 35(4): 1-15. |
[4] | 马东烨, 陈宇航, 赵靖舟, 吴伟涛, 宋平, 陈梦娜. 鄂尔多斯盆地东部二叠系下石盒子组8段河流相砂体构型要素[J]. 岩性油气藏, 2023, 35(1): 63-73. |
[5] | 任梦怡, 胡光义, 范廷恩, 范洪军. 秦皇岛32-6油田北区新近系明化镇组下段复合砂体构型及控制因素[J]. 岩性油气藏, 2022, 34(6): 141-151. |
[6] | 彭妙, 张磊, 陶金雨, 赵康, 张祥辉, 张昌民. 玛湖凹陷三叠系百口泉组砂砾岩中砾石磨圆度定量表征[J]. 岩性油气藏, 2022, 34(5): 121-129. |
[7] | 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103. |
[8] | 王立辉, 夏惠芬, 韩培慧, 曹瑞波, 孙先达, 张思琪. 剩余油分布的微观特征及其可动用程度的定量表征[J]. 岩性油气藏, 2021, 33(2): 147-154. |
[9] | 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154. |
[10] | 陈彬滔, 史忠生, 薛罗, 马轮, 赵艳军, 何巍巍, 王磊, 史江龙. 古潜山周缘滩坝沉积模式与岩性油藏勘探实践——以南苏丹Melut盆地Ruman地区Galhak组为例[J]. 岩性油气藏, 2018, 30(6): 37-44. |
[11] | 甘立琴, 苏进昌, 谢岳, 李超, 何康, 来又春. 曲流河储层隔夹层研究——以秦皇岛32-6油田为例[J]. 岩性油气藏, 2017, 29(6): 128-134. |
[12] | 张辉, 吴子瑾, 周伟, 于兴河, 孙乐, 胡勇, 谭程鹏. 北部湾盆地WZA区流一上亚段源-汇分析及沉积相展布[J]. 岩性油气藏, 2017, 29(5): 55-66. |
[13] | 张建兴, 林承焰, 张宪国, 孙志峰, 陈家昀. 基于储层构型与油藏数值模拟的点坝储层剩余油分布研究[J]. 岩性油气藏, 2017, 29(4): 146-153. |
[14] | 朱茂, 朱筱敏, 曾洪流, 董艳蕾, 刘畅, 郑荣华. 冀中坳陷饶阳凹陷浅水曲流河三角洲沉积体系——以赵皇庄—肃宁地区沙一段为例[J]. 岩性油气藏, 2017, 29(2): 59-67. |
[15] | 唐 武,王英民,仲米虹 . 隆后坳陷区三角洲沉积特征及演化模式—— — 以桑塔木地区为例[J]. 岩性油气藏, 2016, 28(3): 34-41. |
|