岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 34–42.doi: 10.12108/yxyqc.20220104

• 油气地质 • 上一篇    下一篇

差异曲率下的曲流河点坝砂体定量表征——以黄河源区白河现代沉积为例

易志凤1,2, 张尚锋1,2, 王雅宁1,2, 徐恩泽1, 赵韶华1, 王玉瑶1   

  1. 1. 长江大学地球科学学院, 武汉 430000;
    2. 长江大学油气资源与勘探技术教育部重点实验室, 湖北荆州 434023
  • 收稿日期:2021-08-29 修回日期:2021-10-09 发布日期:2022-01-21
  • 通讯作者: 张尚锋(1964—),男,博士,教授,主要从事沉积学与层序地层学方面的教学和科研工作。Email:jpuzhangsf@163.com。 E-mail:jpuzhangsf@163.com
  • 作者简介:易志凤(1996-),女,长江大学在读硕士研究生,研究方向为应用沉积学。地址:(430000)湖北省武汉市蔡甸区长江大学武汉校区地球科学学院。Email:1248422842@qq.com
  • 基金资助:
    国家自然科学基金项目“南海北部宽缓大陆架海平面变化及双坡折带层序地层模型”(编号:41472098)资助

Quantitative characterization of point bar sand bodies in meandering river under different curvatures: A case study of modern deposition of Baihe river in the source area of Yellow River

YI Zhifeng1,2, ZHANG Shangfeng1,2, WANG Yaning1,2, XU Enze1, ZHAO Shaohua1, WANG Yuyao1   

  1. 1. School of Geoscience, Yangtze University, Wuhan 430000, China;
    2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Jingzhou 434000, Hubei, China
  • Received:2021-08-29 Revised:2021-10-09 Published:2022-01-21

摘要: 正确认识曲流河点坝砂体的形态和规模,对井间砂体连通认识、流体运移路径分析及剩余油高效精准挖潜具有重要意义。以黄河源区现代白河为例,利用ArcGIS软件对白河卫星影像的31个典型点坝砂体进行矢量化,建立点坝砂体规模参数的基础测量数据表,并通过坡降划分选取典型点坝曲流段进行刻画,在曲率划分的基础上探讨了点坝砂体规模与河道宽度的定量关系。结果表明:坡降越大,则河道宽度越小,曲率越小;点坝长度、点坝宽度与河道宽度两两之间呈正相关关系,且在不同曲率下,其相关性有所差异,当曲率k小于2时,点坝长度与河道宽度的相关系数为0.790,点坝宽度与点坝长度的相关系数为0.812,点坝宽度与河道宽度的相关系数为0.414;当k为2~2.5时,点坝长度与河道宽度的相关系数为0.709,点坝宽度与点坝长度的相关系数为0.883,点坝宽度与河道宽度的相关系数为0.841。该研究结果对曲流河储层定量表征具有一定的借鉴意义。

关键词: 曲流河, 点坝, 定量表征, 曲率, ArcGIS, 坡降, 现代沉积

Abstract: A correct understanding of the shape and scale of meandering river point bar sand bodies is of great significance to the understanding of interwell sand body connectivity,fluid migration path analysis and efficient and accurate tapping of remaining oil. Taking the modern Baihe river in the Yellow River source area as an example, ArcGIS software was used to vectorize the 31 typical point bar sand bodies in the Baihe satellite image,and the basic measurement data table of the parameters of point bar sand body scale was established. The typical point bar meandering sections were selected for characterization through slope division,and the quantitative relationship between the scale of the point bar sand bodies and the width of the river channel was discussed on the basis of curvature division. The results show that the larger the slope,the smaller the river width and the smaller the curvature. There is a positive correlation among point bar length,point bar width and river channel width,and the correlation is different under different curvatures. When the curvature k is less than 2,the correlation coefficient between point bar length and river channel width is 0.790,the correlation coefficient between point bar width and point par length is 0.812,and the correlation coefficient between point bar width and river channel width is 0.414. When k is 2.0-2.5,the correlation coefficient between point bar length and river channel width is 0.709,the correlation coefficient between point bar width and point bar length is 0.883,and the correlation coefficient between point bar width and river channel width is 0.841. The research results can be used for reference to the quantitative characterization of meandering river reservoirs.

Key words: meandering river, point bar, quantitative characterization, curvature, ArcGIS, slope, modern deposition

中图分类号: 

  • TE121.2+3
[1] 薛培华.河流点坝相储层模式概论.北京:石油工业出版社, 1991:1-20. XUE P H. An introduction to reservoir models of point bar facies. Beijing:Petroleum Industry Press, 1991:1-20.
[2] 贾爱林. 中国储层地质模型20年. 石油学报, 2011, 32(1):181-188. JIA A L. Research achievements on reservoir geological modeling of China in the past two decades.Acta Petrolei Sinica, 2011, 32(1):181-188.
[3] 张建兴, 林承焰, 张宪国, 等.基于储层构型与油藏数值模拟的点坝储层剩余油分布研究.岩性油气藏, 2017, 29(4):146-153. ZHANG J X, LIN C Y, ZHANG X G, et al. Remaining oil distribution of point bar reservoir based on reservoir architecture and reservoir numerical simulation.Lithologic Reservoirs, 2017, 29(4):146-153.
[4] SCHUMM S A. Sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 1963, 74(9):1089-1100.
[5] LEOPOLD L. Fluvial processes in geomorphology. Dover:Dover Publications, 1964:15-27.
[6] SCHUMM S A. Fluvial paleochannels//RIGBY J K, HAMBLIN W K. Recognition of ancient sedimentary environment. SEPM Special Publications 16, 1972:98-107.
[7] LORENZ J C, HEINZE D M, CLARK J A, et al. Determination of widths of meander-belt sandstone reservoirs from vertical downhole data, Mesaverde Group, Piceance Creek Basin, Colorado.AAPG Bulletin, 1985, 69(5):710-721.
[8] NICOLL T J, HICKIN E J. Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology, 2010, 116:37-47.
[9] 岳大力, 吴胜和, 刘建民.曲流河点坝地下储层构型精细解剖方法.石油学报, 2007, 28(4):99-103. YUE D L, WU S H, LIU J M. An accurate method for anatomizing architecture of subsurface reservoir in point bar of meandering river. Acta Petrolei Sinica, 2007, 28(4):99-103.
[10] 李宇鹏, 吴胜和, 岳大力.现代曲流河道宽度与点坝长度的定量关系.大庆石油地质与开发, 2008, 27(6):19-22. LI Y P, WU S H, YUE D L. Quantitative relation of the channel width and point-bar length of modern meandering river. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(6):19-22.
[11] 石书缘, 胡素云, 冯文杰, 等. 基于Google Earth软件建立曲流河地质知识库.沉积学报, 2012, 30(5):869-878. SHI S Y, HU S Y, FENG W J, et al. Building geological knowledge database based on Google Earth software. Acta Sedimentologica Sinica, 2012, 30(5):869-878.
[12] 范广娟, 李新宇, 赵跃军, 等.基于卫星图像的点坝参数定量关系研究与应用.数学的实践与认识, 2014, 44(3):62-67. FAN G J, LI X Y, ZHAO Y J, et al. Point bar parameters' quantitative relationship research and application based on satellite Images. Mathematics in Practice and Theory, 2014, 44(3):62-67.
[13] 王海峰, 范廷恩, 宋来明, 等.高弯度曲流河砂体规模定量表征研究.沉积学报, 2017, 35(2):279-289. WANG H F, FAN T E, SONG L M, et al. Quantitative characterization study on sand body scale in high sinuosity meandering river. Acta Sedimentologica Sinica, 2017, 35(2):279-289.
[14] LEEDER M R. Fluviatile fining-upwards cycles and the magnitude of palaeochannels. Geological Magazine, 1973, 110(3):265-276.
[15] 刘振坤, 吴胜和, 王晖.现代曲流河点坝定量模式探讨.地质与资源, 2012, 21(3):337-340. LIU Z K, WU S H, WANG H. Study on the quantitative model for point bar of modern meandering river. Geology and Resources, 2012, 21(3):337-340.
[16] 乔辉, 王志章, 李莉, 等.基于卫星影像建立曲流河地质知识库及应用.现代地质, 2015, 29(6):1444-1453. QIAO H, WANG Z Z, LI L, et al. Application of geological knowledge database of modern meandering river based on satellite image. Geoscience, 2015, 29(6):1444-1453.
[17] 王冬冬, 宋亚开, 郭宇鹏.基于Google Earth软件对曲流河点坝的研究.中国锰业, 2017, 35(2):141-143. WANG D D, SONG Y K, GUO Y P. A Google Earth-based study on point bar of meandering river.China's Manganese Industry, 2017, 35(2):141-143.
[18] 李少华, 张昌民, 林克湘, 等.储层建模中几种原型模型的建立.沉积与特提斯地质, 2004, 24(3):102-107. LI S H, ZHANG C M, LIN K X, et al. The construction of prototype models in reservoir modeling. Sedimentary Geology and Tethyan Geology, 2004, 24(3):102-107.
[19] 周银邦, 吴胜和, 计秉玉, 等.曲流河储层构型表征研究进展. 地球科学进展, 2011, 26(7):695-702. ZHOU Y B, WU S H, JI B Y, et al. Research progress on the characterization of fluvial reservoir architecture. Advances in Earth Science, 2011, 26(7):695-702.
[20] WILLIS B J, TANG H. Three-dimensional connectivity of point bar deposits. Journal of Sedimentary Research, 2010, 80:440-454.
[21] AMOS KJ, JEFF P P, BRADBURY W, et al. The influence of bend amplitude and planform morphology on sedimentation in submarine channels. Marine and Petroleum Geology, 2010, 27:1431-1447.
[22] DONSELAAR M E, OVEREEM I. Connectivity of fluvial point bar deposits:An example from the Miocene Huesca fluvial fan, Ebro Basin, Spain. AAPG Bulletin, 2008, 92(9):1109-1129.
[23] 李少华, 汗日明, 张昌民, 等.结合露头信息建立储层地质模型.天然气地球科学, 2006, 17(3):374-377. LI S H, HAN R M, ZHANG C M, et al. Integration of outcrop in reservoir modeling. Natural Gas Geoscience, 2006, 17(3):374-377.
[24] 赵资乐.黄河上游黑河、白河流域水沙规律.甘肃水利水电技术, 2005, 41(4):336-338. ZHAO Z L. Water and sediment laws of Heihe and Baihe river basins in Upper Yellow River. Gansu Water Resources and Hydropower Technology, 2005, 41(4):336-338.
[25] 黄汲清, 陈炳蔚.中国及邻区特提斯海的演化.北京:科学出版社, 1987:52-54. HUANG J Q, CHEN B W. The evolution of the Tethys in China and adjacent regions. Beijing:Science Press, 1987:52-54.
[26] 王云飞, 王苏民, 薛滨, 等.黄河袭夺若尔盖古湖时代的沉积学依据.科学通报, 1995, 40(8):723-725. WANG Y F, WANG S M, XUE B, et al. Sedimentological basis of the Yellow River's attack and capture of the ancient lake in Zoige. Chinese Science Bulletin, 1995, 40(8):723-725.
[27] 汤韬, 李志威.黄河源区弯曲河群分布与形态及边界条件.水利水电科技进展, 2020, 40(1):10-16. TANG T, LI Z W. Distribution, planform and boundary conditions of meandering river groups in source region of Yellow River. Advances in Science and Technology of Water Resources, 2020, 40(1):10-16.
[28] 杨玥, 李志威, 胡旭跃, 等.黄河源白河与黑河下游凸岸点边滩形态与变化规律.泥沙研究, 2021, 46(1):50-56. YANG Y, LI Z W, HU X Y, et al. Morphological characteristics and processes of point bars in the lower White and Black Rivers of the Yellow River Source region. Journal of Sediment Research, 2021, 46(1):50-56.
[29] 李志威, 王兆印, 李艳富, 等.黄河源区典型弯曲河流的几何形态特征.泥沙研究, 2012(4):11-17. LI Z W, WANG Z Y, LI Y F, et al. Planform geometry characteristics of typical meandering rivers in Yellow River Source. Journal of Sediment Research, 2012(4):11-17.
[30] 李志威, 王兆印, 潘保柱.牛轭湖形成机理与长期演变规律. 泥沙研究, 2012(5):16-25. LI Z W, WANG Z Y, PAN B Z. Formation mechanism and longterm evolution of oxbow lakes. Journal of Sediment Research, 2012(5):16-25.
[31] 殷丹.ArcGIS在河湖管理范围划界工作中的应用.水土保持应用技术, 2020, 194(2):43-44. YIN D. Application of ArcGIS in delimitation of river and lake management scope.Technology of Soil and Water Conservation, 2020, 194(2):43-44.
[32] 汤国安, 杨昕.ArcGIS地理信息系统空间分析实验教程. 北京:科学出版社, 2012:1-5. TANG G A, YANG X. ArcGIS geographic information system spatial analysis experiment course. Beijing:Science Press, 2012:1-5.
[33] 钱宁.关于河流分类及成因问题的讨论.地理学报, 1985, 40(1):1-10. QING N. On the classification and causes of formation of different channel patterns. Acta Geographica Sinica, 1985, 40(1):1-10.
[34] 倪晋仁, 王随继, 王光谦.现代冲积河流的河型空间转化模式探讨.沉积学报, 2000, 18(1):1-6. NI J R, WANG S J, WANG G Q. Spatial variations of channel patterns. Acta Sedimentologica Sinica, 2000, 18(1):1-6.
[35] 李志威, 刘晶, 胡世雄, 等.中国冲积大河的河型分布与成因. 水利水电科技进展, 2017, 37(2):7-13. LI Z W, LIU J, HU S X, et al. Distribution and formation of river patterns of large alluvial rivers in China. Advances in Science and Technology of Water Resources, 2017, 37(2):7-13.
[36] 钱宁, 张仁, 周志德. 河床演变学. 北京:科学出版社, 1987:167-178. QIAN N, ZHANG R, ZHOU Z D. Riverbed evolution. Beijing:Science Press, 1987:167-178.
[37] 王雷, 刘国涛, 龙涛, 等.一种曲流河点坝体内部侧积体描述方法.岩性油气藏, 2008, 20(4):132-134. WANG L, LIU G T, LONG T, et al. Description method of lateral accretion within point bar of meandering river. Lithologic Reservoirs, 2008, 20(4):132-134.
[38] 张昌民, 尹太举, 李少华, 等.基准面旋回对河道砂体几何形态的控制作用:以枣园油田孔一段枣Ⅱ-Ⅲ油组为例.岩性油气藏, 2007, 19(4):9-12. ZHANG C M, YIN T J, LI S H, et al. Control of base level cycles on channel sand geometry:A case study of Zao Ⅱ-Ⅲ reservoirs, Zaoyuan Oilfield. Lithologic Reservoirs, 2007, 19(4):9-12.
[1] 王立辉, 夏惠芬, 韩培慧, 曹瑞波, 孙先达, 张思琪. 剩余油分布的微观特征及其可动用程度的定量表征[J]. 岩性油气藏, 2021, 33(2): 147-154.
[2] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[3] 陈彬滔, 史忠生, 薛罗, 马轮, 赵艳军, 何巍巍, 王磊, 史江龙. 古潜山周缘滩坝沉积模式与岩性油藏勘探实践——以南苏丹Melut盆地Ruman地区Galhak组为例[J]. 岩性油气藏, 2018, 30(6): 37-44.
[4] 甘立琴, 苏进昌, 谢岳, 李超, 何康, 来又春. 曲流河储层隔夹层研究——以秦皇岛32-6油田为例[J]. 岩性油气藏, 2017, 29(6): 128-134.
[5] 张辉, 吴子瑾, 周伟, 于兴河, 孙乐, 胡勇, 谭程鹏. 北部湾盆地WZA区流一上亚段源-汇分析及沉积相展布[J]. 岩性油气藏, 2017, 29(5): 55-66.
[6] 张建兴, 林承焰, 张宪国, 孙志峰, 陈家昀. 基于储层构型与油藏数值模拟的点坝储层剩余油分布研究[J]. 岩性油气藏, 2017, 29(4): 146-153.
[7] 朱茂, 朱筱敏, 曾洪流, 董艳蕾, 刘畅, 郑荣华. 冀中坳陷饶阳凹陷浅水曲流河三角洲沉积体系——以赵皇庄—肃宁地区沙一段为例[J]. 岩性油气藏, 2017, 29(2): 59-67.
[8] 唐 武,王英民,仲米虹 . 隆后坳陷区三角洲沉积特征及演化模式—— — 以桑塔木地区为例[J]. 岩性油气藏, 2016, 28(3): 34-41.
[9] 龚小平,唐洪明,赵 峰,王俊杰,熊 浩. 四川盆地龙马溪组页岩储层孔隙结构的定量表征[J]. 岩性油气藏, 2016, 28(3): 48-57.
[10] 孙廷彬,国殿斌,李中超,王 玲,尹楠鑫,李胜玉. 鄱阳湖浅水三角洲分支河道分布特征[J]. 岩性油气藏, 2015, 27(5): 144-148.
[11] 陈培元,谭秀成,杨辉廷,王海芳,靳秀菊. 礁滩型储层层间非均质性定量表征[J]. 岩性油气藏, 2013, 25(4): 27-32.
[12] 白振华,詹燕涛,王赢,曾丽媛. 苏里格气田苏14 井区盒8 段河流相砂体展布与演化规律研究[J]. 岩性油气藏, 2013, 25(1): 56-62.
[13] 崔立杰,何幼斌,王锦喜,王振卿,胡再元. 基于层面的地震曲率属性在碳酸盐岩断裂预测中的应用———以塔里木盆地塔北某区块为例[J]. 岩性油气藏, 2012, 24(1): 92-96.
[14] 王时林,秦启荣,苏培东,范晓丽,李乐. 川北阆中—南部地区大安寨段裂缝预测[J]. 岩性油气藏, 2011, 23(5): 69-72.
[15] 王志萍,秦启荣,苏培东,范晓丽. LZ 地区致密砂岩储层裂缝综合预测方法及应用[J]. 岩性油气藏, 2011, 23(3): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陶云光, 袁 刚, 陈新安, 牛慧赟,孔 旭,赵卫东. 二维地震连片相对保幅处理及储层预测技术在塔西南地区的应用[J]. 岩性油气藏, 2007, 19(1): 96 -100 .
[2] 冯心远,王宇超,胡自多,李 斐,邵喜春. 基于叠后地震记录求取整形算子的叠前资料拼接技术[J]. 岩性油气藏, 2007, 19(3): 93 -96 .
[3] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[4] 张霞. 勘探人的整体素质培养( Ⅰ )[J]. 岩性油气藏, 2007, 19(4): 128 -130 .
[5] 李先鹏. 泥质地层中饱和度指数的确定[J]. 岩性油气藏, 2008, 20(2): 83 -85 .
[6] 郭飞飞,康建云,孙建峰,陆俊泽,王修平. 江汉盆地构造演化与海相地层油气成藏模式[J]. 岩性油气藏, 2010, 22(1): 23 -29 .
[7] 陈沫. 横向各向同性介质地震波场逆时偏移[J]. 岩性油气藏, 2009, 21(4): 78 -81 .
[8] 孙勤华,刘晓梅,刘建新,张继娟. 利用波形分析技术半定量预测塔中碳酸盐岩储层[J]. 岩性油气藏, 2010, 22(1): 101 -103 .
[9] 王艳梅,徐振永,张铭,杨晓龙,张凤润. 印尼ZG 气田Lumut 段测井沉积相研究[J]. 岩性油气藏, 2010, 22(1): 70 -75 .
[10] 李国福,苏云,黄倩. 弹性波阻抗反演技术的应用[J]. 岩性油气藏, 2010, 22(Z1): 80 -84 .