岩性油气藏 ›› 2014, Vol. 26 ›› Issue (6): 89–97.doi: 10.3969/j.issn.1673-8926.2014.06.015

• 油气地质 • 上一篇    下一篇

茂名油页岩生烃演化特征及热解动力学—— — 以琼东南盆地地质模型为例

刘 畅1,苏 龙2,3,关宝文2,3,4,郑有伟2,3,4,常 江2,3,郑建京2,3   

  1.  1. 中国石油大学(北京) 地球科学学院,北京 102249 ; 2. 甘肃省油气资源研究重点实验室,甘肃 兰州 730000 ; 3. 中国科学院油气资源研究重点实验室,甘肃 兰州 730000 ; 4. 中国科学院大学,北京 100049
  • 出版日期:2014-11-20 发布日期:2014-11-20
  • 作者简介:刘畅( 1989- ),男,中国石油大学在读硕士研究生,研究方向为沉积岩石学、储层地质学、层序地层学及测井地质学。 地址:( 102249 )北京市昌平区中国石油大学地球科学学院。 E-mail : 921715317@qq.com
  • 基金资助:

    中国科学院“西部之光”人才培养计划项目“准东地区侏罗系各类烃源岩的生排烃特征及生烃潜力评价”(编号: Y404RC1 )、国家科 技重大专项“深层烃源岩凝析油的排出与残留特征及定量化模拟研究”(编号: 2011ZX05008-002 )以及“盆地深层流体性态及低渗 砂岩储层形成的流体 - 岩石相互作用关系”(编号: 2011ZX05008-004 )联合资助

Thermolytic dynamics and hydrocarbon generation characteristics of Maoming Oil Shale: Taking the geological model of Qiongdongnan Basin as an example

LIU Chang1, SU Long 2,3, GUAN Baowen 2,3,4, ZHENG Youwei 2,3,4, CHANG Jiang 2,3, ZHENG Jianjing 2,3   

  1.  1. College of Geosciences , China University of Petroleum , Beijing 102249 , China ; 2. Key Laboratory of Petroleum Resources Research , Gansu Province , Lanzhou 730000 , China ; 3. Key Laboratory of Petroleum Resources Research , Institute of Geology and Geophysics , Chinese Academy of Sciences , Lanzhou 730000 , China ; 4. University of Chinese Academy of Sciences , Beijing 100049 , China
  • Online:2014-11-20 Published:2014-11-20

摘要:

针对海上高地温场条件下天然气的生成和预测研究,选用琼东南盆地的地质模型,以低成熟茂名油页岩(型有机质)与该盆地的煤(型有机质)为样品,采用封闭体系和开放体系全岩热解实验,得出热解油气的产率特征。不同演化阶段各烃类组分的生烃动力学定量模型表明,煤生成不同组分的活化能分布范围比茂名油页岩的宽得多。 其中,茂名油页岩热解生成甲烷、乙烷、丙烷和重烃(C4~6)对应的活化能分布范围分别为 38~86 kcal/mol44~92 kcal/mol43~77 kcal/mol 46~70 kcal/mol;活化能主频分别为 52 kcal/mol54 kcal/mol63 kcal/mol 48 kcal/mol,所占比例分别为 20.44%38.04%42.50%25.05%;指前因子分别为 6.47×1011 s-12.70×1012 s-11.09×1015 s-1 8.39×1015 s-1。 利用生气动力学方法,结合琼东南盆地的热史数据,通过茂名油页岩和煤的生气预测对比揭示,在地质条件下的生气过程中,与茂名油页岩相比较,煤具有释放氢的慢速率与低生成率的特征以及较长的演化进程。结果认为:类似于琼东南盆地崖城组煤系烃源岩,处于海上高地温场条件下,在高演化阶段仍具有很好的生气潜力。 该研究拓宽了我国海域煤型气的勘探领域,具有实践和理论意义。

关键词: 火山岩, 测井响应, 岩性识别, 测井交会图, 成像测井, 准噶尔盆地

Abstract:

 In view of the natural gas generation and prediction problems under the condition of offshore high geothermal field, taking the geological model of Qiongdongnan Basin as an example, natural gas generation process was simulated by heating immature Maoming Oil Shale samples with kerogens of Ⅱ type and coal samples from the Qiongdongnan Basin with kerogens of Ⅲ type. In order to determine the characteristics of the yields of oil and gas generation derived from pyrolysis, we adopted the hydrous pyrolysis experiments in the closed system and non-isothermal
anhydrous pyrolysis experiments in the open system. The dynamics quantitative models of hydrocarbon generation of various hydrocarbon compositions in different evolution stages show that the range of activation energy distribution derived from different components of coal is much wider than that of Maoming Oil Shale. Among them, the ranges of activation energy distribution for methane, ethane, propane and heavy hydrocarbon
C46generated by Maoming Oil Shale derived from pyrolysis are from 38 to 86 kcal/mol, 44 to 92 kcal/mol, 43 to 77 kcal/mol and 46 to 70 kcal/mol respectively. And the dominant frequency of activation energy are 52 kcal/mol, 54 kcal/mol, 63 kcal/mol and 48 kcal/mol respectively, their percent are 20.44%, 38.04%, 42.5% and 25.05% respectively,and the pre-exponential factors are 6.47×1011 s-1, 2.70×1012 s-1, 1.09×1015 s-1 and 8.39×1015 s-1 respectively.Using the kinetic methods of natural gas generation, combined with the thermal history data from Qiongdongnan Basin, we contrasted the prediction of natural gas generation between Maoming Oil Shale and coal. It indicates that coal of
type Ⅲ releases hydrogen more slowly than Maoming Oil Shale of type Ⅱ during the thermal evolution, suggesting a lower hydrocarbon generative rate but a longer thermal evolutionary phase of hydrocarbon generation. The results reveal that: similar to the hydrocarbon source rocks of coal
-measures in Yacheng Formation of Qiongdongnan Basin, Maoming Oil Shale in high thermal evolutionary phase still has fine potential of natural gas generation under the condition of offshore high geothermal field. This study is more theoretical and practical significance to coal-type gas exploration and development in the wider areas of Chinese Sea.

 

Key words: volcanicrocks , loggingresponse , lithologyidentification , loggingcrossplot , imaginglogging , JunggarBasin

[1]戴金星,胡国艺,倪云燕,等.中国东部天然气分布特征[J].天然气地球科学,2009,20(4):471-487.
[2]Tissot B T,Durand B,Espitalie J,et al. Influence of nature and diagenesis of organic matter in formation of petroleum [J]. AAPG Bulletin,1974,58:499-506.
[3]Tissot B T,Welte D H. Petroleum Formation and Occurrences[M].Berlin:Springer, 1984:699.
[4]刘金钟,唐永春.用干酪根生烃动力学方法预测甲烷生成量之一例[J].科学通报,1998,43(11):1187-1191.
[5]Gaschnitz R,Krooss B M,Gerling P,et al. On-line pyrolysis-GCIRMS: Isotope fractionation of thermally generated from coals[J].Fuel, 2001,80(15):2139-2153.
[6]Behar F,Gillaizeau B,Derenne S,et al. Nitrogendist ribution in the pyrolysis products of a type Ⅱ kerogen (Cenomanian, Italy),timing of molecular nitrogen production versus other gases [J]. Energy & Fuels,2000,14:431-440.
[7]Ungerer P. State of the art in kinetic modeling of oil formation and expulsion[J]. Organic Geochemistry,1990,16(1):1-25.
[8]Su Long,Zheng Jianjing,Chen Guojun,et al. The upper limit of maturity of natural gas generation and its implication for the Yacheng Formation in the Qiongdongnan Basin,China[J]. Journal of Asian Earth Sciences,2012,54/55:203-213.
[9]刘全有,Krooss B M,金之钧,等.煤及显微组分在超高温开放体系实验中动力学参数确立与天然气形成过程预测[J].地学前缘,2009,16(1):167-172.
[10]Su Long,Lü Yuzhuo,Zheng Jianjing,et al. Thermolytic dynamics and prediction of natural gas generation from marine source rocks in the deepwater area of Qiongdongnan Basin,China [J]. Indian Journal of Geo-Marine Sciences,2014, 43(2):149-162.
[11]王拓,朱如凯,白斌,等.非常规油气勘探、评价和开发新方法[J].岩性油气藏,2013,25(6):35-39.
[12]关恒.基于液油比的特高含水期水驱开发指标预测方法[J].岩性油气藏,2013,25(5):100-103.
[13]张海茹,李昊.煤层气峰值产量拟合及产量动态预测方法研究[J].岩性油气藏,2013,25(4):116-118.
[14]Behar F,Tang Y,Liu J. Comparison of rate constants for some molecular tracers generated during artificial maturation of kerogens:Influence of kerogen type[J]. Organic Geochemistry,1997,26:281-287.
[15]Pepper A S,Corvi P J. Simple kinetic models of petroleum formation. Part 1:Oil and gas generation from kerogen[J]. Marine and Petroleum Geology, 1995, 12(3):291-319.
[16]胡国艺,李志生,罗霞,等.两种热模拟体系下有机质生气特征对比[J].沉积学报,2004,22(4):718-728.
[17]卢双舫,王民,王跃文,等.密闭体系与开放体系模拟实验结果的比较研究及其意义[J].沉积学报,2006, 24(2):282-288.
[18]王云鹏,赵长毅,王兆云,等.利用生烃动力学方法确定海相有机质的主生气期及其初步应用[J].石油勘探与开发,2005,32(4):153-158.
[19]米立军,袁玉松,张功成,等.南海北部深水区地热特征及其成因[J].石油学报,2009,30(1):27-32.
[20]吴景富,杨树春,张功成,等.南海北部深水区盆地热历史及气源岩热演化研究[J].地球物理学报,2013,56(1):170-180.
[21]王均,黄尚瑶,黄歌山,等.中国地温分布的基本特征[M].北京:地震出版社,1990.
[22]袁玉松,郭彤楼,胡圣标,等.下扬子苏南地区构造-热演化及烃源岩成烃史研究———以圣科 1 井为例[J].自然科学进展,2005,15(6):753-758.
[23]Yuan Yusong,Hu Shengbiao,Wang Hongjun,et al. Meso-Cenozoic tectonothermal evolution of Ordos basin,central China:Insights from newly acquired vitrinite reflectance data and a revision of existing paleothermal indicator data[J]. J. Geodynamics,2007,44 (1/2):33-46.
[24]袁玉松,马永生,胡圣标,等.中国南方现今地热特征[J].地球物理学报,2006,49(4):1118-1126.
[25]王良书,李成,刘绍文,等.塔里木盆地北缘库车前陆盆地地温梯度分布特征[J].地球物理学报,2003,46(3):403-407.
[26]王社教,胡圣标,汪集旸.准噶尔盆地热流及地温场特征[J].地球物理学报,2000,43(6):771-779.
[27]邱楠生,王绪龙,杨海波,等.准噶尔盆地地温分布特征[J].地质科学,2001,36(3):350-358.
[28]Yang Shuchun,Hu Shengbiao,Cai Dongsheng,et al. Present-day heat flow,thermal history and tectonic subsidence of the East China Sea Basin[J]. Marine and Petroleum Geology,2004,21(9):1095-1105.
[29]杨树春,胡圣标,蔡东升,等.南黄海南部盆地地温场特征及热-构造演化[J].科学通报,2003,48(14):1564-1569.
[30]胡圣标,何丽娟,汪集旸.中国大陆地区大地热流数据汇编(第三版)[J].地球物理学报,2001,44(5):611-626.
[31]朱伟林,张功成,杨少坤,等.南海北部大陆边缘盆地天然气地质[M].北京:石油工业出版社,2007.
[32]苏龙,郑建京,王琪,等.琼东南盆地超压的研究进展及形成机制[J].天然气地球科学,2012,23(4):662-672.
[33]黄保家,李绪深,王振峰,等.琼东南盆地深水区气源岩地球化学特征与天然气潜力[J].中国海上油气,2012,24(4):1-7.
[34]张功成,米立军,吴景富,等.凸起及其倾没端———琼东南盆地深水区大中型油气田有利勘探方向[J].中国海上油气,2010,22(6):360-368.
[35]侯读杰,王培荣,林壬子,等.茂名油页岩裂解气轻烃组成和热 演化特征[J].江汉石油学院学报,1989,11(4):7-11.
[36]Dieckmann V,Fowler M,Horsfield B. Predicting the composition of natural gas generated by the Duvernay Formation(Western Canada Sedimentary Basin) using a compositional kinetic approach [J].Organic Geochemistry,2004,35:845-862.
[37]张功成,何玉平,沈怀磊.琼东南盆地崖北凹陷崖城组气源岩分布及其意义[J].天然气地球科学,2012, 23(4):654-661.
[38]张义娜,张功成,何玉平,等.琼东南盆地北礁凹陷崖城组沉积与气源岩发育特征[J].天然气地球科学,2013, 24(4):725-732.
[39]李增学,何玉平,刘海燕,等.琼东南盆地崖城组煤的沉积学特征与聚煤模式[J].石油学报,2010, 31(4):542-547.
[1] 石文武, 雍运动, 吴开龙, 田彦灿, 王鹏. 渤海湾盆地老爷庙地区火山岩速度建模与成像[J]. 岩性油气藏, 2021, 33(4): 101-110.
[2] 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136.
[3] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
[4] 武中原, 张欣, 张春雷, 王海英. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128.
[5] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[6] 陈棡, 卞保力, 李啸, 刘刚, 龚德瑜, 曾德龙. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 46-56.
[7] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[8] 余兴, 尤新才, 白雨, 李鹏, 朱涛. 玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J]. 岩性油气藏, 2021, 33(1): 81-89.
[9] 关新, 潘树新, 曲永强, 许多年, 张寒, 马永平, 王国栋, 陈雪珍. 准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力[J]. 岩性油气藏, 2021, 33(1): 90-98.
[10] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[11] 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266.
[12] 孙予舒, 黄芸, 梁婷, 季汉成, 向鹏飞, 徐新蓉. 基于XGBoost算法的复杂碳酸盐岩岩性测井识别[J]. 岩性油气藏, 2020, 32(4): 98-106.
[13] 胡潇, 曲永强, 胡素云, 潘建国, 尹路, 许多年, 滕团余, 王斌. 玛湖凹陷斜坡区浅层油气地质条件及勘探潜力[J]. 岩性油气藏, 2020, 32(2): 67-77.
[14] 李佳思, 付磊, 张金龙, 陈静, 牛斌, 张顺存. 准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化[J]. 岩性油气藏, 2019, 31(6): 54-66.
[15] 吴伟, 邵广辉, 桂鹏飞, 张虔, 魏浩元, 李国利, 任盼亮. 基于电成像资料的裂缝有效性评价和储集层品质分类——以鸭儿峡油田白垩系为例[J]. 岩性油气藏, 2019, 31(6): 102-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .