岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 14–23.doi: 10.12108/yxyqc.20220102

• 油气地质 • 上一篇    下一篇

东营凹陷营北地区沙三中亚段重力流沉积特征

黄雅睿1, 杨剑萍2, 卢惠东3, 李宇志3, 黄志佳4, 党鹏生4, 房萍4, 牟瑛顺4   

  1. 1. 中国石化胜利油田分公司石油开发中心有限公司, 山东东营 257061;
    2. 中国石油大学(华东)地球科学与技术学院, 山东青岛 266580;
    3. 中国石化胜利油田分公司东辛采油厂, 山东东营 257061;
    4. 中国石油华北油田分公司采油三厂, 河北沧州 062450
  • 收稿日期:2021-08-13 修回日期:2021-09-20 发布日期:2022-01-21
  • 作者简介:黄雅睿(1994-),女,硕士,主要从事油气地质勘探方面的综合研究工作。地址:(257061)山东省东营市东营区聊城路119号。Email:784461053@qq.com。
  • 基金资助:
    山东省重大科技创新工程项目“山东东部海域日青威盆地油气赋存条件研究”(编号:2017CXGC1608)资助

Sedimentary characteristics of gravity flow of middle Es32 member in Yingbei area, Dongying Sag

HUANG Yarui1, YANG Jianping2, LU Huidong3, LI Yuzhi3, HUANG Zhijia4, DANG Pengsheng4, FANG Ping4, MU Yingshun4   

  1. 1. Petroleum Development Center, Sinopec Shengli Oilfield Company, Dongying 257061, Shandong, China;
    2. School of Geosciences, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    3. Dongxin Oil Production Plant, Sinopec Shengli Oilfield Company, Dongying 257061, Shandong, China;
    4. No.3 Oil Production Plant, PetroChina Huabei Oilfield Company, Cangzhou 062450, Hebei, China
  • Received:2021-08-13 Revised:2021-09-20 Published:2022-01-21

摘要: 为了研究东营凹陷营北地区沙三中亚段(Es32)重力流沉积特征及演化,利用岩心、测井、录井和化验资料分析了其沉积特征,并细化了砂组,绘制了沉积微相图。结果表明:该区Es32重力流沉积可划分为水道控制型沉积和非水道控制型沉积2类。水道控制型沉积包括重力流水道和前端复合体2类沉积亚相,重力流水道亚相包括重力流水道微相和堤岸微相;前端复合体亚相包括沟道化朵叶体微相、碎屑舌状体微相、浊积朵叶体微相和浊积席状体微相。非水道控制型沉积包括滑动亚相和滑塌亚相。沉积演化模式为:Z6—Z4砂组沉积期水体较深,发育半深湖的重力流沉积;Z3—Z1砂组沉积期随着湖平面下降,研究区东部发育滨浅湖三角洲河口坝砂体,中部和西部以重力流沉积为主。这种重力流沉积演化模式,可为该区储层预测提供可借鉴的地质模型。

关键词: 重力流, 沉积微相, 演化模式, 沙三中亚段, 东营凹陷

Abstract: To study the sedimentary characteristics and evolution of gravity flow of the middle third member of Shahejie Formation(Es32) in Yingbei area, Dongying Sag, the sedimentary characteristics were analyzed by using rock cores, well logging, logging and analysis test data, sand groups were refined, and sedimentary microfacies map was drawn. The results show that gravity flow sand bodies of Es32 can be divided into channel-controlled deposit and non channel-controlled deposits. Channel-controlled deposit includes gravity flow channel and anterior complex subfacies. Gravity flow channel mainly includes gravity-flow channel and embankment microfacies, and anterior complex includes channelized lobes, tongue-like debris, turbidite lobes and turbidite sheet sands. Non channel controlled deposits mainly includes slide and slump. The sedimentary evolution model is:During the sedimentary period of Z6-Z4 sand groups, the water was relatively deep, which was mainly developed as the gravity flow deposition. During the sedimentary period of Z3-Z1 sand groups, with the decline of the lake level, shallow lake delta mouth bar sand bodies were developed in the east of the study area, and gravity flow deposit was mainly developed in the middle and west. This sedimentary evolution model of gravity flow can provide a geological model for reservoir prediction in the study area.

Key words: gravity flow, sedimentary microfacies, evolution model, Es32 member, Dongying Sag

中图分类号: 

  • TE121.3
[1] 张青青.东营凹陷三角洲前缘滑塌成因重力流沉积特征及沉积模式.青岛:中国石油大学(华东), 2016. ZHANG Q Q. Sedimentary characteristics and depositional model of gravity flows caused by sediment transportation of delta front in Dongying Sag. Qingdao:China University of Petroleum(East China), 2016.
[2] JACKA A D, BECK R H, STGERAIN L C, et al.The Permian deep-sea fans of the Tera Huashan group(melon)and the Delaware Basin. E-conomic Paleontologists and Mineralogists Part of the Permian Basin Publishing Society, 1968, 68(11):49-90.
[3] WALKER R G. Deep-water sandstone facies and ancient submarine fans:Models for exploration for stratigraphic traps. AAPG Bulletin, 1978, 62(6):932-966.
[4] NORMARK W R. Growth patterns of deep-sea fans. AAPG Bulletin, 1970, 54(11):2170-2195.
[5] NORMARK W R. Fan valleys, channels, and depositional lobes on modern submarine fans:Characters for recognition of sandy turbidite environments. AAPG Bulletin, 1978, 62(6):912-931.
[6] MUTTI E, RICCI L F. Turbidites of the northern Apennines:Introduction to facies analysis. International Geology Review, 1978, 20(2):125-166.
[7] 庞雄, 陈长民, 朱明, 等.深水沉积研究前缘问题.地质论评, 2007, 53(1):36-43. PANG X, CHEN C M, ZHU M, et al. Frontier of the deep-water deposition study. Geological Review, 2007, 53(1):36-43.
[8] SHANMUGAM G. High-density turbidity currents are they sandy debris flows? Journal of Sedimentary Research, 1996, 66(1):2-10.
[9] SHANMUGAM G. The Bouma sequence and the turbidite mind set. Earth-Science Reviews, 1997, 42(4):201-229.
[10] SHANMUGAM G. 50 years of the turbidite paradigm(19501990 s):Deep-water processes and facies models:A critical perspective. Marine and Petroleum Geology, 2000, 17(2):285342.
[11] SHANMUGAM G. Ten turbidite myths. Earth-Science Reviews, 2002, 58(3/4):311-341.
[12] SHANMUGAM G, MOIOLA R J. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma. AAPG Bulletin, 1995, 79(5):672-695.
[13] SHANMUGAM G, BLOCH R B, MITCHELL S M, et al. Basinfloor fans in the North Sea:Sequence stratigraphic models vs. sedimentary facies. AAPG Bulletin, 1995, 79(4):477-512.
[14] SHANMUGAM G, MOIOLA R J. An unconventional model for the deep-water sandstones of the Jackfork Group(Pennsylvanian), Ouachita Mountains, Arkansas and Oklahoma. SEPM 15, 1994:311-326.
[15] 陈秀艳, 姜在兴, 师晶, 等.东辛油田沙三中亚段沉积特征与油藏分布规律.沉积与特提斯地质, 2010, 30(4):19-23. CHEN X Y, JIANG Z X, SHI J, et al. Sedimentary characteristics and oil reservoir distribution of the middle Es 3 member in Dongxin Oilfield. Sedimentary Geology and Tethyan Geology, 2010, 30(4):19-23.
[16] 杨田, 操应长, 王艳忠, 等.深水重力流类型、沉积特征及成因机制:以济阳坳陷沙河街组三段中亚段为例.石油学报, 2015, 36(9):24-35. YANG T, CAO Y C, WANG Y Z, et al. Types, sedimentary characteristics and genetic mechanisms of deep-water gravity flows:A case study of the middle sub-member in member 3 of Shahejie Formation in Jiyang Depression. Acta Petrolei Sinica, 2015, 36(9):24-35.
[17] 陈杰, 刘传虎, 谭明友, 等.进积型三角洲交汇区沉积模式:以东营凹陷沙三中亚段为例. 沉积学报, 2016, 34(6):11871197. CHEN J, LIU C H, TAN M Y, et al. Depositional model of prograding delta confluences:A case from Es3 members in the Paleogene Dongying Sag. Acta Sedimentologica Sinica, 2016, 34(6):1187-1197.
[18] 鲜本忠, 王璐, 刘建平, 等.东营凹陷东部始新世三角洲供给型重力流沉积特征与模式. 中国石油大学学报(自然科学版), 2016, 40(5):10-21. XIAN B Z, WANG L, LIU J P, et al. Sedimentary characteristics and model of delta-fed turbidites in Eocene eastern Dongying Depression. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(5):10-21.
[19] 蔡进功, 姜秀芳, 范存堂.东营盆地始新统沉积体系及盆地演化.沉积学报, 1995, 13(增刊1):27-37. CAI J G, JIANG X F, FAN C T. Basin evolution and distribution of lacustrine systems in middle and Upper Eocene, Dongying Basin. Acta Sedimentologica Sinica, 1995, 13(Suppl 1):27-37.
[20] 隋风贵, 郭玉新, 王宝言, 等.东营凹陷深陷期构造坡折带与低位扇序列.石油勘探与开发, 2005, 32(2):63-67. SUI F G, GUO Y X, WANG B Y, et al. Fault break slope and low stand fan sequence in Dongying Sag. Petroleum Exploration and Development, 2005, 32(2):63-67.
[21] 彭军, 许天宇, 于乐丹.东营凹陷沙河街组四段湖相细粒沉积特征及其控制因素.岩性油气藏, 2020, 32(5):1-12. PENG J, XU T Y, YU L D. Characteristics and controlling factors of lacustrine fine-grained sediments of the fourth member of Shahejie Formation in Dongying Depression. Lithologic Reservoirs, 2020, 32(5):1-12.
[22] 符勇, 李忠诚, 万谱, 等.三角洲前缘滑塌型重力流沉积特征及控制因素:以松辽盆地大安地区青一段为例.岩性油气藏, 2021, 33(1):198-208. FU Y, LI Z C, WAN P, et al. Sedimentary characteristics and controlling factors of slump gravity flow in delta front:A case study of Qing 1 member in Da'an area, Songliao Basin. Lithologic Reservoirs, 2021, 33(1):198-208.
[1] 何贤, 闫建平, 王敏, 王军, 耿斌, 李志鹏, 钟光海, 张瑞湘. 低渗透砂岩孔隙结构与采油产能关系——以东营凹陷南坡F154区块为例[J]. 岩性油气藏, 2022, 34(1): 106-117.
[2] 张文文, 韩长城, 田继军, 张治恒, 张楠, 李正强. 吉木萨尔凹陷二叠系芦草沟组层序地层划分及演化特征[J]. 岩性油气藏, 2021, 33(5): 45-58.
[3] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
[4] 王欢, 刘波, 石开波, 刘航宇, 韩波. 伊拉克-伊朗地区侏罗纪—白垩纪构造-沉积演化特征[J]. 岩性油气藏, 2021, 33(3): 39-53.
[5] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[6] 符勇, 李忠诚, 万谱, 阙宜娟, 王振军, 吉雨, 黄礼, 罗静兰, 鲍志东. 三角洲前缘滑塌型重力流沉积特征及控制因素——以松辽盆地大安地区青一段为例[J]. 岩性油气藏, 2021, 33(1): 198-208.
[7] 卿繁, 闫建平, 王军, 耿斌, 王敏, 赵振宇, 晁静. 砂砾岩体沉积期次划分及其与物性的关系——以东营凹陷北部陡坡带Y920区块沙四上亚段为例[J]. 岩性油气藏, 2020, 32(6): 50-61.
[8] 彭军, 许天宇, 于乐丹. 东营凹陷沙河街组四段湖相细粒沉积特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 1-12.
[9] 刘为, 杨希冰, 张秀苹, 段亮, 邵远, 郝德峰. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素[J]. 岩性油气藏, 2019, 31(2): 75-82.
[10] 傅强, 李璟, 邓秀琴, 赵世杰, 庞锦莲, 孟鹏飞. 沉积事件对深水沉积过程的影响——以鄂尔多斯盆地华庆地区长6油层组为例[J]. 岩性油气藏, 2019, 31(1): 20-29.
[11] 苑伯超, 肖文华, 魏浩元, 张楠, 邓毅林, 张光伟. 酒泉盆地鸭儿峡地区白垩系下沟组砂砾岩储层特征及主控因素[J]. 岩性油气藏, 2018, 30(3): 61-70.
[12] 闫建平, 梁强, 耿斌, 赖富强, 温丹妮, 汪宙峰. 低渗透砂岩微孔特征与孔隙结构类型的关系——以东营凹陷南斜坡沙四段为例[J]. 岩性油气藏, 2017, 29(3): 18-26.
[13] 卫 端, 高志前,孟苗苗,杨孝群,王静彬,王珊珊. 塔河地区鹰山组高精度层序划分及沉积微相展布规律[J]. 岩性油气藏, 2016, 28(6): 68-77.
[14] 孙雨,董毅明,王继平,马世忠,于利民,闫百泉. 松辽盆地红岗北地区扶余油层储层单砂体分布模式[J]. 岩性油气藏, 2016, 28(4): 9-15.
[15] 唐 武,王英民,仲米虹 . 隆后坳陷区三角洲沉积特征及演化模式—— — 以桑塔木地区为例[J]. 岩性油气藏, 2016, 28(3): 34-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张昌民, 尹太举, 李少华, 熊福均. 基准面旋回对河道砂体几何形态的控制作用———以枣园油田孔一段枣Ⅱ—Ⅲ油组为例[J]. 岩性油气藏, 2007, 19(4): 9 -12 .
[2] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[3] 金凤鸣,赵贤正,邹伟宏,卢学军,史原鹏,曹兰柱,芦丽菲. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践( Ⅱ)———“四元成藏”机理[J]. 岩性油气藏, 2007, 19(3): 23 -27 .
[4] 史丹妮,杨 双. 滨里海盆地盐岩运动及相关圈闭类型[J]. 岩性油气藏, 2007, 19(3): 73 -79 .
[5] 蔡佳,姜华,赵忠新,!陈少平,罗家群. 泌阳凹陷下二门油田南部H31层序沉积体系及沉积相演化特征[J]. 岩性油气藏, 2008, 20(3): 53 -58 .
[6] 胡红, 罗宁, 李联新. 阵列声波资料在测井解释中的应用[J]. 岩性油气藏, 2008, 20(2): 97 -101 .
[7] 王辉, 张玉芬. 基于模型的叠前数据多参数非线性反演[J]. 岩性油气藏, 2008, 20(2): 108 -113 .
[8] 杜乐天. 从新世纪独联体有关地球排气和油气成因理论进展所得到的启示[J]. 岩性油气藏, 2009, 21(4): 1 -9 .
[9] 何俊,陈小凡,乐平,王龙飞. 线性回归方法在油气产量递减分析中的应用[J]. 岩性油气藏, 2009, 21(2): 103 -105 .
[10] 雷涛,周文,杨艺,邓虎成,张光辉,赵安坤. 塔里木盆地塔中地区海相烃源岩测井评价方法[J]. 岩性油气藏, 2010, 22(4): 89 -94 .