岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 106–117.doi: 10.12108/yxyqc.20220111

• 勘探技术 • 上一篇    下一篇

低渗透砂岩孔隙结构与采油产能关系——以东营凹陷南坡F154区块为例

何贤1,2, 闫建平1,2,3, 王敏4, 王军4, 耿斌4, 李志鹏4, 钟光海5, 张瑞湘2   

  1. 1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500;
    2. 西南石油大学地球科学与技术学院, 成都 610500;
    3. 中国地质大学构造与油气资源教育部重点实验室, 武汉 430074;
    4. 中国石化胜利油田分公司勘探开发研究院, 山东东营 257015;
    5. 中国石油西南油气田分公司页岩气研究院, 成都 610500
  • 收稿日期:2021-02-01 修回日期:2021-05-31 发布日期:2022-01-21
  • 通讯作者: 闫建平(1980—),男,博士,教授,主要从事测井地质学及非常规储层测井评价方面的教学与研究工作。Email:yanjp_tj@163.com。 E-mail:yanjp_tj@163.com
  • 作者简介:何贤(2001-),男,西南石油大学在读硕士研究生,研究方向为测井地质学。地址:(610500)四川省成都市新都区西南石油大学地球科学与技术学院。Email:1561537893@qq.com
  • 基金资助:
    中国石油-西南石油大学创新联合体科技合作项目“川南深层与昭通中浅层海相页岩气规模效益开发关键技术研究”(编号:2020-CX020000),西南石油大学国家级创新训练项目“湖相页岩油夹层、裂缝测井解释方法及应用”(编号:S202010615025)和胜利油田科技攻关项目“页岩油地质储量计算关键参数研究”(编号:YKK2013)联合资助

Relationship between pore structure and oil production capacity of low permeability sandstone: A case study of block F154 in south slope of Dongying Sag

HE Xian1,2, YAN Jianping1,2,3, WANG Min4, WANG Jun4, GENG Bin4, LI Zhipeng4, ZHONG Guanghai5, ZHANG Ruixiang2   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China;
    4. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying 257015, Shandong, China;
    5. Research Institute of Shale Gas, PetroChina Southwest Oil & Gas Field Company, Chengdu 610500, China
  • Received:2021-02-01 Revised:2021-05-31 Published:2022-01-21

摘要: 东营凹陷南坡F154区块沙河街组沙三段(Es3)砂岩储层渗透率低,孔隙结构复杂,产能预测难度大。根据岩心覆压物性测试、铸体薄片、恒速压汞、高压压汞及X射线衍射等资料,分析孔隙结构特征及控制因素;基于生产数据求得表征产能的参数采油强度;分析孔隙结构参数与采油强度的关系,对孔隙结构进行分类,通过孔隙结构类型测井识别,将采油强度刻度到测井曲线,建立了基于测井敏感变量的多参数采油强度预测模型,并利用实际井的生产数据进行验证,结果表明:大喉道数量决定了渗透率的高低;采油强度值越大,孔隙结构越好;采油强度较大的孔隙结构类型层段,通常自然伽马低,声波时差、深电阻率、深浅电阻率差值高。实际采油强度与预测采油强度相关系数大于0.9,计算结果符合生产预测的要求。该研究成果为复杂孔隙结构的低渗透砂岩储层产能预测提供了依据。

关键词: 低渗透砂岩, 孔隙结构, 产能预测, 采油强度, 测井敏感曲线, 沙三段, 东营凹陷

Abstract: The sandstone reservoirs of Shahejie Formation(Es3) in block F154 in the south slope of Dongying Sag are characterized by low permeability, complex pore structure and difficulty in productivity prediction. The pore structure characteristics and controlling factors were analyzed by using the data of core physical property test with overburden pressure,casting thin section,constant-rate mercury injection,high pressure mercury injection and X-ray diffraction. Based on the production data,the parameter of oil production intensity was obtained to represent the productivity. Relationships between pore structure parameters and oil production intensity were analyzed,and the pore structures were classified. The oil production intensity was calibrated to the logging curve through the identification of pore structure types. A multi-parameter oil production intensity prediction model was established based on sensitive logging variables,and verified with the data of actual wells. The results show that the number of large throats determines the permeability. The larger the oil production intensity,the better the pore structure. The intervals of pore structure with high oil production intensity usually have low natural gamma, high acoustic time difference,deep resistivity and deep and shallow resistivity difference. The correlation coefficient between the actual and the predicted oil production intensity is greater than 0.9,and the calculated results meet the requirements of production prediction. The research results provide a basis for the productivity prediction of low permeability sandstone reservoirs with complex pore structure.

Key words: low permeability sandstone, pore structure, productivity prediction, oil production intensity, sensi tive logging curve, Shahejie Formation, Dongying Sag

中图分类号: 

  • P631
[1] 陈永峤, 于兴河, 周新桂, 等. 东营凹陷各构造区带下第三系成岩演化与次生孔隙发育规律研究. 天然气地球科学, 2004, 15(1):68-74. CHEN Y Q, YU X H, ZHOU X G, et al. Research on diagenetic evolution succession and occurrence of secondary porosity of Lower Tertiary in different structural belt of Dongying Depression. Natural Gas Geoscience, 2004, 15(1):68-74.
[2] 耿斌, 蔡进功, 闫建平, 等. 近油源低渗透砂岩地层水特征及饱和度解释:以东营凹陷南斜坡沙河街组为例. 中国矿业大学学报, 2017, 46(6):1340-1348. GENG B, CAI J G, YAN J P, et al. Formation water characteristics of low-permeability sandstone near oil source and its significance for saturation calculation:Taking the Shahejie Formation in the south slope of Dongying Depression as an example. Journal of China University of Mining & Technology, 2017, 46(6):1340-1348.
[3] 尚明忠, 李秀华, 王文林, 等. 断陷盆地斜坡带油气勘探:以东营凹陷为例. 石油实验地质, 2004, 26(4):324-332. SHANG M Z, LI X H, WANG W L, et al. Petroleum exploration of the slope belt in the graben basin:A case study of the Dongying Sag. Petroleum Geology & Experiment, 2004, 26(4):324-332.
[4] 闫建平, 张帆, 胡钦红, 等. 东营凹陷南坡低渗透储层孔隙结构及有效性分析. 中国矿业大学学报, 2018, 47(2):345-356. YAN J P, ZHANG F, HU Q H, et al. Pore structure and effectiveness of low-permeability reservoirs on the south slope of Dongying Depression. Journal of China University of Mining & Technology, 2018, 47(2):345-356.
[5] QING F, YAN J P, WANG J, et al. Pore structure and fluid saturation of near-oil source low-permeability turbidite sandstone of the Dongying Sag in the Bohai Bay Basin, East China. Journal of Petroleum Science and Engineering, 2021, 196(1):1-19.
[6] 孔星星, 肖佃师, 蒋恕, 等. 联合高压压汞和核磁共振分类评价致密砂岩储层:以鄂尔多斯盆地临兴区块为例. 天然气工业, 2020, 40(3):38-47. KONG X X, XIAO D S, JIANG S, et al. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs:A case study of the Linxing block in the Ordos Basin. Natural Gas Industry, 2020, 40(3):38-47.
[7] 郭乐乐, 李忠百, 张稳, 等. 鄂尔多斯盆地大宁-吉县区块主力致密砂岩储层孔隙结构分析. 天然气工业, 2018, 38(增刊1):18-23. GUO L L, LI Z B, ZHANG W, et al. Pore structure analysis of main tight sandstone reservoirs in Daning-Jixian block, Ordos Basin. Natural Gas Industry, 2018, 38(Suppl 1):18-23.
[8] YAN J P, HE X, GENG B, et al. Nuclear magnetic resonance T2 spectrum multifractal characteristics and pore structure evaluation. Applied Geophysics, 2017, 14(2):205-215.
[9] 刘伟, 张德峰, 刘海河, 等. 致密砂岩储层特征及产能有效性测井评价. 测井技术, 2014, 38(6):735-739. LIU W, ZHANG D F, LIU H H, et al. Tight sandstone reservoir characteristics and log evaluation of productivity effectiveness. Well Logging Technology, 2014, 38(6):735-739.
[10] 闫建平, 梁强, 耿斌, 等. 低渗透砂岩微孔特征与孔隙结构类型的关系:以东营凹陷南斜坡沙四段为例. 岩性油气藏, 2017, 29(3):18-26. YAN J P, LIANG Q, GENG B, et al. Relationship between micropore characteristics and pore structure of low permeability sandstone:A case of the fourth member of Shahejie Formation in southern slope of Dongying Sag. Lithologic Reservoirs, 2017, 29(3):18-26.
[11] 冯进, 赵冰, 张占松, 等. 珠江口盆地惠州凹陷储层测井产能分级与识别方法. 物探与化探, 2020, 44(1):81-87. FENG J, ZHAO B, ZHANG Z S, et al. Classification and identification method of reservoir logging capacity in Huizhou Depression of Pearl River Mouth Basin. Geophysical and Geochemical Exploration, 2020, 44(1):81-87.
[12] 鞠传学, 董春梅, 张宪国, 等. 西湖凹陷花港组低渗透砂岩储层孔隙结构. 海洋地质前沿, 2016, 32(9):32-40. JU C X, DONG C M, ZHANG X G, et al. Study on the pore structure of low permeability reservoir of the Huagang Formation in Xihu depression area. Marine Geology Frontiers, 2016, 32(9):32-40.
[13] 黄娅, 孙盼科, 万金彬, 等. 福山油田流沙港组微观孔喉结构评价及其主控因素研究. 长江大学学报(自然科学版), 2016, 13(26):8-13. HUANG Y, SUN P K, WAN J B, et al. Microscopic pore structure evaluation and main controlling factors of Liushagang reservoir in Fushan oilfield. Journal of Yangtze University(Natural Science Edition), 2016, 13(26):8-13.
[14] 何羽飞, 万金彬, 王长江, 等. 基于测井资料的特低渗储层产能预测分类研究. 国外测井技术, 2014, 35(2):25-28. HE Y F, WAN J B, WANG C J, et al. Research on classification and prediction of extra low permeability reservoir capacity based on well logging data. World Well Logging Technology, 2014, 35(2):25-28.
[15] 柳娜, 周兆华, 任大忠, 等. 致密砂岩气藏可动流体分布特征及其控制因素:以苏里格气田西区盒8段与山1段为例. 岩性油气藏, 2019, 31(6):14-25. LIU N, ZHOU Z H, REN D Z, et al. Distribution characteristics and controlling factors of movable fluid in tight sandstone gas reservoir:A case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige gas field. Lithologic Reservoirs, 2019, 31(6):14-25.
[16] 王慧, 訾慧, 董永强, 等. 海拉尔某地区核磁共振孔隙结构评价方法与应用. 国外测井技术, 2019, 40(2):60-65. WANG W, ZI H, DONG Y Q, et al. Evaluation method and application of NMR pore structure in a region of Hailar. World Well Logging Technology, 2019, 40(2):60-65.
[17] 黄杰, 杜玉洪, 王红梅, 等. 特低渗储层微观孔隙结构与可动流体赋存特征:以二连盆地阿尔凹陷腾一下段储层为例. 岩性油气藏, 2020, 32(5):93-101. HUANG J, DU Y H, WANG H M, et al. Characteristics of micro pore structure and movable fluid of extra-low permeability reservoir:A case study of lower Et1 reservoir in A' er Sag, Erlian Basin. Lithologic Reservoirs, 2020, 32(5):93-101.
[18] 朱华银, 安来志, 焦春艳. 恒速与恒压压汞差异及其在储层评价中的应用. 天然气地球科学, 2015, 26(7):1316-1322. ZHU H Y, AN L Z, JIAO C Y, et al. The difference between constant-rate mercury injection and the application in reservoir assessment. Natural Gas Geoscience, 2015, 26(7):1316-1322.
[19] 李军辉, 吴海波, 李跃, 等. 海拉尔盆地致密储层微观孔隙结构特征分析. 中国矿业大学学报, 2020, 49(4):721-729. LI J H, WU H B, L Y, et al. Microscopic pore structure characteristics of tight reservoir in Hailar Basin. Journal of China University of Mining & Technology, 2020, 49(4):721-729.
[20] 吴亚军, 陈昱林, 张岩, 等. 川西气田储层孔隙结构特征及其对产能的影响. 天然气工业, 2019, 39(增刊1):156-161. WU Y J, CHEN Y L, ZHANG Y, et al. Characteristics of reservoir pore structure and its effect on productivity in western Sichuan gas field. Natural Gas Industry, 2019, 39(Suppl 1):156161.
[21] 闫建平, 温丹妮, 李尊芝, 等. 低渗透砂岩孔隙结构对岩电参数的影响及应用. 天然气地球科学, 2015, 26(12):2227-2233. YAN J P, WEN D N, LI Z Z, et al. The influence of low permeable sandstone pore structure on rock electrical parameters and its applications. Natural Gas Geoscience, 2015, 26(12):22272233.
[22] 陈超峰, 孙刚, 毛新军, 等. 高探1井储层评价与产能分析. 油气井测试, 2020, 29(5):61-67. CHEN C F, SUN G, MAO X J, et al. Reservoir evaluation and productivity analysis of well Gaotan 1. Well Testing, 2020, 29(5):61-67.
[23] 袁建强. 保护油层钻井液技术在宝浪油田的应用. 钻井液与完井液, 2004, 21(5):33-35. YUAN J Q. Drilling fluid technology for formation protection in Baolang Oilfield. Drilling Fluid and Completion Fluid, 2004, 21(5):33-35.
[24] 姬靖皓, 席家辉, 曾凤凰, 等. 致密油藏分段多簇压裂水平井非稳态产能模型. 岩性油气藏, 2019, 31(4):157-164. JI J H, XI J H, ZENG F H, et al. Unsteady productivity model of segmented multi -cluster fractured horizontal wells in tight oil reservoir. Lithologic Reservoirs, 2019, 31(4):157-164.
[25] 杨洋, 石万忠, 张晓明, 等. 页岩岩相的测井曲线识别方法:以焦石坝地区五峰组-龙马溪组为例. 岩性油气藏, 2021, 33(2):135-146. YANG Y, SHI W Z, ZHANG X M, et al. Identification method of shale lithofacies by logging curve:A case study from WufengLongmaxi Formation in Jiaoshiba area, SW China. Lithologic Reservoirs, 2021, 33(2):135-146.
[26] 闫建平, 张帆, 王敏, 等. 基于核磁共振实验的低渗透砂岩岩电参数分类及应用:以东营凹陷南坡沙四段为例. 地球物理学报, 2019, 62(7):2748-2758. YAN J P, ZHANG F, WANG M, et al. Classification of rockelectro parameters of low-permeability sandstone based on nuclear magnetic resonance log and its application:An example of Es4 in south slope of the Dongying depression. Chinese Journal of Geophysics, 2019, 62(7):2748-2758.
[27] 谭成仟, 吴少波, 宋子齐. 利用测井资料预测辽河小洼油田东营组油气产能. 新疆石油地质, 2001, 22(2):147-149. TAN C Q, WU S B, SONG Z Q. Productivity prediction of Dongying formation reservoir with log data in Liaohe Xiaowa Oilfield. Xinjiang Petroleum Geology, 2001, 22(2):147-149.
[1] 黄雅睿, 杨剑萍, 卢惠东, 李宇志, 黄志佳, 党鹏生, 房萍, 牟瑛顺. 东营凹陷营北地区沙三中亚段重力流沉积特征[J]. 岩性油气藏, 2022, 34(1): 14-23.
[2] 王乔, 宋立新, 韩亚杰, 赵会民, 刘颖. 辽河西部凹陷雷家地区古近系沙三段沉积体系及层序地层[J]. 岩性油气藏, 2021, 33(6): 102-113.
[3] 杜猛, 向勇, 贾宁洪, 吕伟峰, 张景, 张代燕. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏, 2021, 33(5): 120-131.
[4] 王静怡, 周志军, 魏华彬, 崔春雪. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154.
[5] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[6] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[7] 卿繁, 闫建平, 王军, 耿斌, 王敏, 赵振宇, 晁静. 砂砾岩体沉积期次划分及其与物性的关系——以东营凹陷北部陡坡带Y920区块沙四上亚段为例[J]. 岩性油气藏, 2020, 32(6): 50-61.
[8] 彭军, 许天宇, 于乐丹. 东营凹陷沙河街组四段湖相细粒沉积特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 1-12.
[9] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
[10] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[11] 陈明江, 程亮, 陆涛. Ahdeb油田Khasib油藏孔隙结构及其对注水开发的影响[J]. 岩性油气藏, 2020, 32(3): 133-143.
[12] 刘建宁, 何幼斌, 王宁, 顾志翔, 郝烃, 刘亚伟. 济阳坳陷惠民凹陷沙三段地震事件沉积特征及地质意义[J]. 岩性油气藏, 2020, 32(2): 14-23.
[13] 宋宣毅, 刘月田, 马晶, 王俊强, 孔祥明, 任兴南. 基于灰狼算法优化的支持向量机产能预测[J]. 岩性油气藏, 2020, 32(2): 134-140.
[14] 宋明明, 韩淑乔, 董云鹏, 陈江, 万涛. 致密砂岩储层微观水驱油效率及其主控因素[J]. 岩性油气藏, 2020, 32(1): 135-143.
[15] 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[2] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[3] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[4] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .
[5] 刘化清, 袁剑英, 李相博, 完颜容, 廖建波. 鄂尔多斯盆地延长期湖盆演化及其成因分析[J]. 岩性油气藏, 2007, 19(1): 52 -56 .
[6] 王权, 刘震, 赵贤正, 金凤鸣, 梁宏斌, 杨德相. 二连盆地地层岩性油藏“多元控砂—四元成藏— 主元富集”与勘探实践( Ⅲ )———“ 主元富集”机理[J]. 岩性油气藏, 2007, 19(4): 13 -19 .
[7] 姚泾利,王克,宋江海,庞锦莲. 鄂尔多斯盆地姬塬地区延长组石油运聚规律研究[J]. 岩性油气藏, 2007, 19(3): 32 -37 .
[8] 王辉, 王凤琴. 甘谷驿油田共大滩区延长组长6 段非均质模式与油气分布[J]. 岩性油气藏, 2008, 20(2): 48 -53 .
[9] 杨伟荣,钱铮,张欣,朱萍,范春霞. 冀中地区文安斜坡带成藏特征研究[J]. 岩性油气藏, 2008, 20(3): 49 -52 .
[10] 李富恒,邹才能,侯连华,陶士振,王岚. 地层油气藏形成机制与分布规律研究综述[J]. 岩性油气藏, 2009, 21(4): 32 -36 .