岩性油气藏 ›› 2023, Vol. 35 ›› Issue (2): 59–67.doi: 10.12108/yxyqc.20230206

• 地质勘探 • 上一篇    下一篇

济阳坳陷渤南洼陷古近系沙河街组流体压力建场过程及其石油地质意义

郑彬1, 董翱1, 张源智2, 张毅1, 苏珊3, 张士超1, 樊津津1, 骆垠山2   

  1. 1. 中国石油青海油田公司 采气二厂, 甘肃 敦煌 736200;
    2. 保利协鑫天然气集团控股有限公司, 北京 100017;
    3. 中国石油青海油田公司 采油一厂, 甘肃 敦煌 736200
  • 收稿日期:2022-05-22 修回日期:2022-06-16 出版日期:2023-03-01 发布日期:2023-03-07
  • 第一作者:郑彬(1986-),男,本科,工程师,主要从事油气田开发工作。地址:(736200)甘肃省敦煌市七里镇青海油田采气二厂。Email:zblhqh@petrochina.com.cn。
  • 通信作者: 张源智(1975-),男,硕士,高级工程师,主要从事油藏精细描述、滚动评价等方面的研究工作。Email:328071197@qq.com。
  • 基金资助:
    国家重大专项“渤海湾盆地精细勘探关键技术”(编号:2016ZX05006)资助。

Fluid pressure field building process and its petroleum geological significance of Paleogene Shahejie Formatiom in Bonan sag, Jiyang Depression

ZHENG Bin1, DONG Ao1, ZHANG Yuanzhi2, ZHANG Yi1, SU Shan3, ZHANG Shichao1, FAN Jinjin1, LUO Yinshan2   

  1. 1. No. 2 Gas Production Plant, PetroChina Qinghai Oilfield Company, Dunhuang 736200, Gansu, China;
    2. POLY-GCL Petroleum Group Holdings Limited, Beijing 100017, China;
    3. No. 1 Oil Production Plant, PetroChina Qinghai Oilfield Company, Dunhuang 736200, Gansu, China
  • Received:2022-05-22 Revised:2022-06-16 Online:2023-03-01 Published:2023-03-07

摘要: 通过对济阳坳陷渤南洼陷古近系沙河街组泥页岩和致密砂岩中的流体包裹体进行古压力测试,恢复了其流体压力演化过程,并探讨了其石油地质意义。研究结果表明: ①渤南洼陷沙三段在馆陶组沉积期及之后共经历了4次压力场重建过程,每次压力场重建的持续时间均为3~4 Ma,表现为低序级幕式特征。②与沙三段低序级幕式压力建场过程不同的是,沙四上亚段在上覆石膏岩的封盖下,压力场重建的门限较高,在东营组沉积期及馆陶组沉积末期发生2次压力场重建过程,表现为高序级幕式特点。③研究区沙三段低序级幕式压力建场过程指示着开放的流体环境和较强的酸性溶蚀作用,以低序级幕式压力建场为主的沙三段储集层物性整体优于高序级幕式建场的沙四上亚段储集层;沙三段烃源岩在排出大量烃类物质的同时,其自身储集空间中也会存在部分残留,从而形成常规油与页岩油的共同富集区。

关键词: 低序级幕式, 高序级幕式, 流体压力建场, 沙三段, 沙四上亚段, 古近系, 渤南洼陷, 济阳坳陷

Abstract: The fluid inclusions in shale and tight sandstone of Paleogene Shahejie Formation in Bonan sag of Jiyang Depression were tested for Paleopressure, the fluid pressure evolution process was restored, and its petroleum geological significance was discussed. The results show that:(1) The third member of Shahejie Formation(Es3) in Bonan sag experienced four pressure field reconstruction processes in Guantao Formation and subsequent sedimentary periods. The duration of each pressure field reconstruction is 3-4 Ma, showing the characteristics of low sequence episodic pattern.(2) Different from the low sequence episodic pressure field building process of Es3, the Es4 has a high threshold for pressure field reconstruction under the sealing of overlying gypsum rocks. Two pressure field reconstruction processes occurred during the sedimentary period of Dongying Formation and the end of Guantao Formation, showing the characteristics of high sequence episodic pressure field.(3) The low sequence episodic pressure field building process of Es3 i ndicates an open fluid environment and strong acid dissolution. The physical properties of Es3 r eservoir with low sequence episodic pressure field are higher than those of the upper Es4 r eservoir with high sequence episodic pressure field. The hydrocarbon source rocks of Es3 n ot only discharge a large number of hydrocarbons, but also contains hydrocarbons in its own reservoir space, so as to form enrichment areas of conventional oil and shale oil.

Key words: low sequence episodic pattern, high sequence episodic pattern, fluid pressure field building, the third member of Shahejie Formation, the upper fourth member of Shahejie Formation, Paleogene, Bonan sag, Jiyang Depression

中图分类号: 

  • TE122.1
[1] 何玉, 周星, 李少轩, 等. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J].岩性油气藏, 2022, 34(3):60-69. HE Yu, ZHOU Xing, LI Shaoxuan, et al. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag, Bohai Bay Basin[J]. Lithologic Reservoirs, 2022, 34(3):60-69.
[2] 张鑫, 陈红汉, 孔令涛, 等. 泌阳凹陷深凹区古流体压力演化与油气充注耦合关系[J].地球科学, 2020, 45(5):1769-1781. ZHANG Xin, CHEN Honghan, KONG Lingtao, et al. The coupling relationship between paleofluid pressure evolution and hydrocarbon-charging events in the deep of Biyang Depression, central China[J]. Earth Science, 2020, 45(5):1769-1781.
[3] 王志宏, 郝翠果, 李建明, 等. 川西前陆盆地超压分布及成因机制[J].岩性油气藏, 2019, 31(6):36-43. WANG Zhihong, HAO Cuiguo, LI Jianming, et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin[J]. Lithologic Reservoirs, 2019, 31(6):36-43.
[4] BERTHELON1 J, BRÜCH A, COLOMBO D, et al. Impact of tectonic shortening on fluid overpressure in petroleum system modelling:Insights from the Neuquén basin, Argentina[J]. Marine and Petroleum Geology, 2021, 127(5):1-44.
[5] LI Jun, ZHAO Jingzhou, HOU Zhiqiang, et al. Origins of overpressure in the central Xihu Depression of the East China Sea shelf basin[J]. AAPG Bulletin, 2021, 105(8):1627-1659.
[6] 蒋有录, 刘华, 张乐, 等.东营凹陷油气成藏期分析[J].石油与天然气地质, 2003, 24(3):215-218. JIANG Youlu, LIU Hua, ZHANG Le, et al. Analysis of petroleum accumulation phase in Dongying Sag[J]. Oil & Gas Geology, 2003, 24(3):215-218.
[7] 刘华, 蒋有录, 卢浩, 等.渤南洼陷流体包裹体特征与成藏期流体压力恢复[J]. 地球科学, 2016, 41(8):1384-1394. LIU Hua, JIANG Youlu, LU Hao, et al. Restoration of fluid pressure during hydrocarbon accumulation period and fluid inclusion feature in the Bonan sag[J]. Earth Science, 2016, 41(8):1384-1394.
[8] 徐兴友, 徐国盛, 秦润森.沾化凹陷渤南洼陷沙四段油气成藏研究[J].成都理工大学学报(自然科学版), 2008, 35(2):113-120. XU Xingyou, XU Guosheng, QIN Runsen. Study on hydrocarbon migration and accumulation of member 4 of Shahejie Formation in Bonan sag, Zhanhua depression, China[J]. Journal of Chengdu University of technology(Science & Technology Edition), 2008, 35(2):113-120.
[9] 刘鹏. 渤南洼陷古近系早期成藏作用再认识及其地质意义[J].沉积学报, 2017, 35(1):173-181. LIU Peng. Geological significance of re-recognition on early reservoir forming of Paleogene in Bonan sag[J]. Acta Sedimentologica Sinica, 2017, 35(1):173-181.
[10] 罗霞, 方旭庆, 张云银, 等.济阳坳陷桩海地区古生界潜山构造特征及形成机制[J]. 地学前缘, 2021, 28(1):33-42. LUO Xia, FANG Xuqing, ZHANG Yunyin, et al. Structural characteristics and formation mechanism of the Palaeozoic buried hills of Zhuanghai area in the Jiyang Depression[J]. Earth Science Frontiers, 2021, 28(1):33-42.
[11] 缪欢, 王延斌, 何川, 等.渤海湾盆地埕北断阶带断裂发育特征及其控藏作用[J]. 岩性油气藏, 2022, 34(2):105-115. MIAO Huan, WANG Yanbin, HE Chuan, et al. Fault development characteristics and reservoir control in Chengbei fault step zone, Bohai Bay Basin[J]. Lithologic Reservoirs, 2022, 34(2):105-115.
[12] 赵笑笑, 闫建平, 王敏, 等.沾化凹陷沙河街组湖相泥页岩夹层特征及测井识别方法[J].岩性油气藏, 2022, 34(1):118-129. ZHAO Xiaoxiao, YAN Jianping, WANG Min, et al. Logging identification method of lacustrine shale interlayers of Shahejie Formation in Zhanhua Sag[J]. Lithologic Reservoirs, 2022, 34(1):118-129.
[13] 刘丽, 闵令元, 孙志刚, 等.济阳坳陷页岩油储层孔隙结构与渗流特征[J]. 油气地质与采收率, 2021, 28(1):106-114. LIU Li, MIN Lingyuan, SUN Zhigang, et al. Pore structure and percolation characteristics in shale oil reservoir of Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1):106-114.
[14] 卢浩, 蒋有录, 刘华, 等.沾化凹陷渤南洼陷油气成藏期分析[J].油气地质与采收率, 2012, 19(2):5-8. LU Hao, JIANG Youlu, LIU Hua, et al. Study on formation stages of oil-gas reservoirs in Bonan subsag, Zhanhua sag[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(2):5-8.
[15] 宫秀梅, 曾溅辉.渤南洼陷古近系膏盐层对深层油气成藏的影响[J].石油勘探与开发, 2003, 30(5):24-27. GONG Xiumei, ZENG Jianhui. Impact of Paleogene evaporates on hydrocarbon accumulation in deep Bonan subsag, Jiyang Depression[J]. Pretroleum Exploration and Development, 2003, 30(5):24-27.
[16] 刘鹏, 杜鹏伟.断陷盆地中浅层油气成藏特征及有利区预测:以渤南洼陷沙二段为例[J].现代地质, 2020, 34(2):849-857. LIU Peng, DU Pengwei. Hydrocarbon accumulation characteristics and prospectivity prediction on medium-shallow sequences in rift basin:Case study on the 2nd member of Shahejie Formation in Bonan sag[J]. Geoscience, 2020, 34(2):849-857.
[17] 孟昱璋, 刘鹏, 王玲, 等.渤南洼陷沙四上亚段膏盐岩成因探讨[J]. 高校地质学报, 2015, 21(2):300-305. MENG Yuzhang, LIU Peng, WANG Ling, et al. The genesis of gypsum zone in the upper part of the fourth member of Shahejie Formation in Bonan sag[J]. Geological Journal of China Universities, 2015, 21(2):300-305.
[18] 衣学磊, 侯贵廷.济阳坳陷中、新生代断裂活动强度研究[J]. 北京大学学报(自然科学版), 2002, 38(4):504-509. YI Xuelei, HOU Guiting. A study of intensity of the faults activity in Jiyang Depression in Mesozoic and Cenozoic[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2002, 38(4):504-509.
[19] 李军, 唐勇, 吴涛, 等.准噶尔盆地玛湖凹陷砾岩大油区超压成因及其油气成藏效应[J]. 石油勘探与开发, 2020, 47(4):679-690. LI Jun, TANG Yong, WU Tao, et al. Overpressure origin and its effects on petroleum accumulation in the conglomerate oil province in Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(4):679-690.
[20] 钟会影, 沈文霞, 藏秋缘, 等.基于PEBI网格的考虑诱导裂缝的聚合物驱压力动态研究[J]. 岩性油气藏, 2022, 34(3):164-170. ZHONG Huiying, SHEN Wenxia, ZANG Qiuyuan, et al. Pressure transient of polymer flooding considering induced fractures based on PEBI grid[J]. Lithologic Reservoirs, 2022, 34(3):164-170.
[21] 远光辉, 操应长, 杨田, 等. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J]. 地学前缘, 2013, 20(5):207-219. YUAN Guanghui, CAO Yingchang, YANG Tian, et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J]. Earth Science Frontiers, 2013, 20(5):207-219.
[22] 李美蓉, 宋来弟, 于海鹏, 等.酸碱度对长石溶蚀及增孔效应的影响[J]. 中国石油大学学报(自然科学版), 2021, 45(5):33-41. LI Meirong, SONG Laidi, YU Haipeng, et al. Influence of pH value on feldspar dissolution and pore-increasing effect[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(5):33-41.
[23] 李小佳, 邓宾, 刘树根, 等.川南宁西地区五峰组-龙马溪组多期流体活动[J]. 岩性油气藏, 2021, 33(6):135-144. LI Xiaojia, DENG Bin, LIU Shugen, et al. Multi-stage fluid activity characteristics of Wufeng-Longmaxi Formation in Ningxi area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(6):135-144.
[24] 王大洋.渤南洼陷沙三下亚段烃源岩地球化学特征及差异性研究[J].南京大学学报(自然科学), 2019, 55(6):924-933. WANG Dayang. Geochemical characteristics and difference of source rocks in the lower segment of Es3 member in Bonan subsag[J]. Journal of Nanjing University(Natural Science), 2019, 55(6):924-933.
[1] 周自强, 朱正平, 潘仁芳, 董於, 金吉能. 基于波形相控反演的致密砂岩储层模拟预测方法——以黄骅坳陷沧东凹陷南部古近系孔二段为例[J]. 岩性油气藏, 2024, 36(5): 77-86.
[2] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[3] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[4] 西智博, 廖建平, 高荣锦, 周晓龙, 雷文文. 辽河坳陷陈家断裂带北部构造演化解析及油气成藏[J]. 岩性油气藏, 2024, 36(3): 127-136.
[5] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[6] 方旭庆, 钟骑, 张建国, 李军亮, 孟涛, 姜在兴, 赵海波. 渤海湾盆地沾化凹陷古近系沙三下亚段旋回地层学分析及地层划分[J]. 岩性油气藏, 2024, 36(3): 19-30.
[7] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[8] 牛成民, 惠冠洲, 杜晓峰, 官大勇, 王冰洁, 王启明, 张宏国. 辽中凹陷西斜坡古近系东三段湖底扇发育模式及大油田发现[J]. 岩性油气藏, 2024, 36(2): 33-42.
[9] 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61.
[10] 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99.
[11] 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39.
[12] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[13] 应凯莹, 蔡长娥, 梁煜琦, 陈鸿, 尚文亮, 苏桂娇. 伊通盆地岔路河断陷古近系断层的垂向封闭性及其控藏作用[J]. 岩性油气藏, 2023, 35(2): 136-143.
[14] 完颜泽, 龙国徽, 杨巍, 柴京超, 马新民, 唐丽, 赵健, 李海鹏. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102.
[15] 黄军立, 张伟, 刘力辉, 蔡国富, 曾有良, 孟庆友, 刘浩. 珠江口盆地番禺4洼古近系文昌组三元地震构形解释技术[J]. 岩性油气藏, 2023, 35(2): 103-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .