岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 14–23.doi: 10.12108/yxyqc.20220102

• 油气地质 • 上一篇    下一篇

东营凹陷营北地区沙三中亚段重力流沉积特征

黄雅睿1, 杨剑萍2, 卢惠东3, 李宇志3, 黄志佳4, 党鹏生4, 房萍4, 牟瑛顺4   

  1. 1. 中国石化胜利油田分公司石油开发中心有限公司, 山东东营 257061;
    2. 中国石油大学(华东)地球科学与技术学院, 山东青岛 266580;
    3. 中国石化胜利油田分公司东辛采油厂, 山东东营 257061;
    4. 中国石油华北油田分公司采油三厂, 河北沧州 062450
  • 收稿日期:2021-08-13 修回日期:2021-09-20 出版日期:2022-01-01 发布日期:2022-01-21
  • 第一作者:黄雅睿(1994-),女,硕士,主要从事油气地质勘探方面的综合研究工作。地址:(257061)山东省东营市东营区聊城路119号。Email:784461053@qq.com。
  • 基金资助:
    山东省重大科技创新工程项目“山东东部海域日青威盆地油气赋存条件研究”(编号:2017CXGC1608)资助

Sedimentary characteristics of gravity flow of middle Es32 member in Yingbei area, Dongying Sag

HUANG Yarui1, YANG Jianping2, LU Huidong3, LI Yuzhi3, HUANG Zhijia4, DANG Pengsheng4, FANG Ping4, MU Yingshun4   

  1. 1. Petroleum Development Center, Sinopec Shengli Oilfield Company, Dongying 257061, Shandong, China;
    2. School of Geosciences, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    3. Dongxin Oil Production Plant, Sinopec Shengli Oilfield Company, Dongying 257061, Shandong, China;
    4. No.3 Oil Production Plant, PetroChina Huabei Oilfield Company, Cangzhou 062450, Hebei, China
  • Received:2021-08-13 Revised:2021-09-20 Online:2022-01-01 Published:2022-01-21

摘要: 为了研究东营凹陷营北地区沙三中亚段(Es32)重力流沉积特征及演化,利用岩心、测井、录井和化验资料分析了其沉积特征,并细化了砂组,绘制了沉积微相图。结果表明:该区Es32重力流沉积可划分为水道控制型沉积和非水道控制型沉积2类。水道控制型沉积包括重力流水道和前端复合体2类沉积亚相,重力流水道亚相包括重力流水道微相和堤岸微相;前端复合体亚相包括沟道化朵叶体微相、碎屑舌状体微相、浊积朵叶体微相和浊积席状体微相。非水道控制型沉积包括滑动亚相和滑塌亚相。沉积演化模式为:Z6—Z4砂组沉积期水体较深,发育半深湖的重力流沉积;Z3—Z1砂组沉积期随着湖平面下降,研究区东部发育滨浅湖三角洲河口坝砂体,中部和西部以重力流沉积为主。这种重力流沉积演化模式,可为该区储层预测提供可借鉴的地质模型。

关键词: 重力流, 沉积微相, 演化模式, 沙三中亚段, 东营凹陷

Abstract: To study the sedimentary characteristics and evolution of gravity flow of the middle third member of Shahejie Formation(Es32) in Yingbei area, Dongying Sag, the sedimentary characteristics were analyzed by using rock cores, well logging, logging and analysis test data, sand groups were refined, and sedimentary microfacies map was drawn. The results show that gravity flow sand bodies of Es32 can be divided into channel-controlled deposit and non channel-controlled deposits. Channel-controlled deposit includes gravity flow channel and anterior complex subfacies. Gravity flow channel mainly includes gravity-flow channel and embankment microfacies, and anterior complex includes channelized lobes, tongue-like debris, turbidite lobes and turbidite sheet sands. Non channel controlled deposits mainly includes slide and slump. The sedimentary evolution model is:During the sedimentary period of Z6-Z4 sand groups, the water was relatively deep, which was mainly developed as the gravity flow deposition. During the sedimentary period of Z3-Z1 sand groups, with the decline of the lake level, shallow lake delta mouth bar sand bodies were developed in the east of the study area, and gravity flow deposit was mainly developed in the middle and west. This sedimentary evolution model of gravity flow can provide a geological model for reservoir prediction in the study area.

Key words: gravity flow, sedimentary microfacies, evolution model, Es32 member, Dongying Sag

中图分类号: 

  • TE121.3
[1] 张青青.东营凹陷三角洲前缘滑塌成因重力流沉积特征及沉积模式.青岛:中国石油大学(华东), 2016. ZHANG Q Q. Sedimentary characteristics and depositional model of gravity flows caused by sediment transportation of delta front in Dongying Sag. Qingdao:China University of Petroleum(East China), 2016.
[2] JACKA A D, BECK R H, STGERAIN L C, et al.The Permian deep-sea fans of the Tera Huashan group(melon)and the Delaware Basin. E-conomic Paleontologists and Mineralogists Part of the Permian Basin Publishing Society, 1968, 68(11):49-90.
[3] WALKER R G. Deep-water sandstone facies and ancient submarine fans:Models for exploration for stratigraphic traps. AAPG Bulletin, 1978, 62(6):932-966.
[4] NORMARK W R. Growth patterns of deep-sea fans. AAPG Bulletin, 1970, 54(11):2170-2195.
[5] NORMARK W R. Fan valleys, channels, and depositional lobes on modern submarine fans:Characters for recognition of sandy turbidite environments. AAPG Bulletin, 1978, 62(6):912-931.
[6] MUTTI E, RICCI L F. Turbidites of the northern Apennines:Introduction to facies analysis. International Geology Review, 1978, 20(2):125-166.
[7] 庞雄, 陈长民, 朱明, 等.深水沉积研究前缘问题.地质论评, 2007, 53(1):36-43. PANG X, CHEN C M, ZHU M, et al. Frontier of the deep-water deposition study. Geological Review, 2007, 53(1):36-43.
[8] SHANMUGAM G. High-density turbidity currents are they sandy debris flows? Journal of Sedimentary Research, 1996, 66(1):2-10.
[9] SHANMUGAM G. The Bouma sequence and the turbidite mind set. Earth-Science Reviews, 1997, 42(4):201-229.
[10] SHANMUGAM G. 50 years of the turbidite paradigm(19501990 s):Deep-water processes and facies models:A critical perspective. Marine and Petroleum Geology, 2000, 17(2):285342.
[11] SHANMUGAM G. Ten turbidite myths. Earth-Science Reviews, 2002, 58(3/4):311-341.
[12] SHANMUGAM G, MOIOLA R J. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma. AAPG Bulletin, 1995, 79(5):672-695.
[13] SHANMUGAM G, BLOCH R B, MITCHELL S M, et al. Basinfloor fans in the North Sea:Sequence stratigraphic models vs. sedimentary facies. AAPG Bulletin, 1995, 79(4):477-512.
[14] SHANMUGAM G, MOIOLA R J. An unconventional model for the deep-water sandstones of the Jackfork Group(Pennsylvanian), Ouachita Mountains, Arkansas and Oklahoma. SEPM 15, 1994:311-326.
[15] 陈秀艳, 姜在兴, 师晶, 等.东辛油田沙三中亚段沉积特征与油藏分布规律.沉积与特提斯地质, 2010, 30(4):19-23. CHEN X Y, JIANG Z X, SHI J, et al. Sedimentary characteristics and oil reservoir distribution of the middle Es 3 member in Dongxin Oilfield. Sedimentary Geology and Tethyan Geology, 2010, 30(4):19-23.
[16] 杨田, 操应长, 王艳忠, 等.深水重力流类型、沉积特征及成因机制:以济阳坳陷沙河街组三段中亚段为例.石油学报, 2015, 36(9):24-35. YANG T, CAO Y C, WANG Y Z, et al. Types, sedimentary characteristics and genetic mechanisms of deep-water gravity flows:A case study of the middle sub-member in member 3 of Shahejie Formation in Jiyang Depression. Acta Petrolei Sinica, 2015, 36(9):24-35.
[17] 陈杰, 刘传虎, 谭明友, 等.进积型三角洲交汇区沉积模式:以东营凹陷沙三中亚段为例. 沉积学报, 2016, 34(6):11871197. CHEN J, LIU C H, TAN M Y, et al. Depositional model of prograding delta confluences:A case from Es3 members in the Paleogene Dongying Sag. Acta Sedimentologica Sinica, 2016, 34(6):1187-1197.
[18] 鲜本忠, 王璐, 刘建平, 等.东营凹陷东部始新世三角洲供给型重力流沉积特征与模式. 中国石油大学学报(自然科学版), 2016, 40(5):10-21. XIAN B Z, WANG L, LIU J P, et al. Sedimentary characteristics and model of delta-fed turbidites in Eocene eastern Dongying Depression. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(5):10-21.
[19] 蔡进功, 姜秀芳, 范存堂.东营盆地始新统沉积体系及盆地演化.沉积学报, 1995, 13(增刊1):27-37. CAI J G, JIANG X F, FAN C T. Basin evolution and distribution of lacustrine systems in middle and Upper Eocene, Dongying Basin. Acta Sedimentologica Sinica, 1995, 13(Suppl 1):27-37.
[20] 隋风贵, 郭玉新, 王宝言, 等.东营凹陷深陷期构造坡折带与低位扇序列.石油勘探与开发, 2005, 32(2):63-67. SUI F G, GUO Y X, WANG B Y, et al. Fault break slope and low stand fan sequence in Dongying Sag. Petroleum Exploration and Development, 2005, 32(2):63-67.
[21] 彭军, 许天宇, 于乐丹.东营凹陷沙河街组四段湖相细粒沉积特征及其控制因素.岩性油气藏, 2020, 32(5):1-12. PENG J, XU T Y, YU L D. Characteristics and controlling factors of lacustrine fine-grained sediments of the fourth member of Shahejie Formation in Dongying Depression. Lithologic Reservoirs, 2020, 32(5):1-12.
[22] 符勇, 李忠诚, 万谱, 等.三角洲前缘滑塌型重力流沉积特征及控制因素:以松辽盆地大安地区青一段为例.岩性油气藏, 2021, 33(1):198-208. FU Y, LI Z C, WAN P, et al. Sedimentary characteristics and controlling factors of slump gravity flow in delta front:A case study of Qing 1 member in Da'an area, Songliao Basin. Lithologic Reservoirs, 2021, 33(1):198-208.
[1] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[2] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[3] 史卜庆, 丁梁波, 马宏霞, 孙辉, 张颖, 许小勇, 王红平, 范国章. 东非海域大型深水沉积体系及油气成藏特征[J]. 岩性油气藏, 2023, 35(6): 10-17.
[4] 孙辉, 范国章, 王红平, 丁梁波, 左国平, 马宏霞, 庞旭, 许小勇. 东非鲁伍马盆地中始新统深水沉积特征及层序界面识别方法[J]. 岩性油气藏, 2023, 35(6): 106-116.
[5] 胡望水, 高飞跃, 李明, 郭志杰, 王世超, 李相明, 李圣明, 揭琼. 渤海湾盆地廊固凹陷古近系沙河街组油藏单元精细表征[J]. 岩性油气藏, 2023, 35(5): 92-99.
[6] 何贤, 闫建平, 王敏, 王军, 耿斌, 李志鹏, 钟光海, 张瑞湘. 低渗透砂岩孔隙结构与采油产能关系——以东营凹陷南坡F154区块为例[J]. 岩性油气藏, 2022, 34(1): 106-117.
[7] 张文文, 韩长城, 田继军, 张治恒, 张楠, 李正强. 吉木萨尔凹陷二叠系芦草沟组层序地层划分及演化特征[J]. 岩性油气藏, 2021, 33(5): 45-58.
[8] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
[9] 王欢, 刘波, 石开波, 刘航宇, 韩波. 伊拉克-伊朗地区侏罗纪—白垩纪构造-沉积演化特征[J]. 岩性油气藏, 2021, 33(3): 39-53.
[10] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[11] 符勇, 李忠诚, 万谱, 阙宜娟, 王振军, 吉雨, 黄礼, 罗静兰, 鲍志东. 三角洲前缘滑塌型重力流沉积特征及控制因素——以松辽盆地大安地区青一段为例[J]. 岩性油气藏, 2021, 33(1): 198-208.
[12] 卿繁, 闫建平, 王军, 耿斌, 王敏, 赵振宇, 晁静. 砂砾岩体沉积期次划分及其与物性的关系——以东营凹陷北部陡坡带Y920区块沙四上亚段为例[J]. 岩性油气藏, 2020, 32(6): 50-61.
[13] 彭军, 许天宇, 于乐丹. 东营凹陷沙河街组四段湖相细粒沉积特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 1-12.
[14] 刘为, 杨希冰, 张秀苹, 段亮, 邵远, 郝德峰. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素[J]. 岩性油气藏, 2019, 31(2): 75-82.
[15] 傅强, 李璟, 邓秀琴, 赵世杰, 庞锦莲, 孟鹏飞. 沉积事件对深水沉积过程的影响——以鄂尔多斯盆地华庆地区长6油层组为例[J]. 岩性油气藏, 2019, 31(1): 20-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .