岩性油气藏 ›› 2019, Vol. 31 ›› Issue (5): 114–120.doi: 10.12108/yxyqc.20190513

• 油气田开发 • 上一篇    下一篇

致密砂岩油藏动态渗吸驱油效果影响因素及应用

刘秀婵1, 陈西泮2, 刘伟3, 王霞1   

  1. 1. 延安大学 石油工程与环境工程学院, 陕西 延安 716000;
    2. 陕西延长石油有限责任公司, 陕西 延安 716000;
    3. 延长油田股份有限公司 定边采油厂, 陕西 榆林 718600
  • 收稿日期:2019-01-30 修回日期:2019-04-30 出版日期:2019-09-21 发布日期:2019-09-16
  • 第一作者:刘秀婵(1985-),女,硕士,讲师,主要从事油气藏勘探与开发方面的教学与研究工作。地址:(610059)陕西省延安市圣地路580号延安大学石油工程与环境工程学院。Email:3195365492@qq.com。
  • 基金资助:
    国家自然科学基金“陆相页岩岩性非均质性及其对油气滞留的影响”(编号:41702136)、延安大学2018年度校级项目“富县地区长8致密油成藏物性下限及主控因素分析”(编号:YDK2018-27)和2018年国家级大学生创新创业训练项目“富县地区延长组长8储层致密油油水层特征研究”(编号:201813020)联合资助

Influencing factors of dynamic imbibition displacement effect in tight sandstone reservoir and application

LIU Xiuchan1, CHEN Xipan2, LIU Wei3, WANG Xia1   

  1. 1. School of Petroleum Engineering and Environmental Engineering, Yan'an University, Yan'an 71600, Shaanxi, China;
    2. Shaanxi Yanchang Petroleum Co., Ltd., Yan'an 716000, Shaanxi, China;
    3. Dingbian Oil Production Plant, Yanchang Oilfield Co., Ltd., Yulin 718600, Shaanxi, China
  • Received:2019-01-30 Revised:2019-04-30 Online:2019-09-21 Published:2019-09-16

摘要: 渗吸驱油作为致密砂岩油藏高效开发的一项重要技术措施,近年来受到越来越多的关注。致密砂岩油藏渗吸驱油效果的影响因素较多,以鄂尔多斯盆地某区块致密砂岩储层为研究对象,通过岩心动态渗吸驱油实验,评价了渗吸液类型、渗吸液浓度、渗吸液注入量、驱替流速、反应时间以及岩心渗透率对储层岩心动态渗吸驱油效果的影响。结果表明:渗吸液中加入非离子表面活性剂HYS-3能够显著提高动态渗吸驱油效率;渗吸液中表面活性剂的浓度越高、渗吸液注入量越大、反应时间越长、岩心渗透率越高时,动态渗吸驱油效率越高;随着驱替流速的增大,岩心动态渗吸驱油效率呈现出先增大后减小的变化趋势;动态渗吸驱油实验最优参数为:驱替流速为0.2 mL/min,渗吸液为0.5% HYS-3,渗吸液注入量为1.0 PV,反应时间> 48 h。矿场应用试验结果表明,实施注水吞吐动态渗吸驱油方案措施后,S油田5口井的日产油量是措施前的2倍多,含水率明显下降,增油效果显著。

关键词: 动态渗吸, 驱油效果, 影响因素, 增油效果, 致密储层

Abstract: As an important technical measure for efficient development of tight sandstone reservoirs,imbibition displacement has attracted more and more attention in recent years. There are many factors affecting the effect of imbibition displacement in tight sandstone reservoirs. Taking a tight sandstone reservoir in a block of Ordos Basin as the research object,the effects of the types,concentration and injection volume of imbibition fluid,displacement velocity,reaction time and core permeability on dynamic imbibition displacement were evaluated by rock core dynamic imbibition displacement experiment. The results show that adding non-ionic surfactant HYS-3 into the infiltration fluid can significantly improve the dynamic imbibition displacement efficiency. The higher the concentration of surfactant in the infiltration fluid,the larger the injection volume of the infiltration fluid,the longer the reaction time and the larger the core permeability,the higher the dynamic imbibition displacement efficiency. With the increase of displacement flow rate,the dynamic imbibition displacement efficiency of the core increased first and then decreased. The optimum parameters of dynamic imbibition displacement experiment are:displacement velocity is 0.2 mL/min,concentration of imbibition fluid is 0.5% HYS-3,injection volume of imbibition fluid is 1.0 PV,reaction time is more than 48 hours. The field application test results show that the daily oil production of 5 wells in S oilfield is more than twice that before the implementation of the dynamic imbibition displacement measures of water injection huff and puff,the water cut is obviously reduced,and the effect of oil increase is remarkable.

Key words: dynamic imbibition, oil displacement effect, influencing factors, oil increase effect, tight reservoir

中图分类号: 

  • TE357
[1] 李海波,郭和坤,刘强,等.致密油储层水驱油核磁共振实验研究. 中南大学学报(自然科学版),2014,45(12):4370-4376. LI H B,GUO H K,LIU Q,et al. NMR experimental study of water displacing oil of tight oil reservoir. Journal of Central South University(Science and Technology),2014,45(12):4370-4376.
[2] 魏忠元,李恕军,杨焕英,等. 致密油藏注水井体积压裂改善注水开发效果技术. 科学技术与工程,2017,17(30):161-166. WEI Z Y,LI S J,YANG H Y,et al. Improving injection development effect by injection well volume fracturing in tight oil reservoir. Science Technology and Engineering,2017,17(30):161-166.
[3] 陈挺,杨正明,王学武,等. 致密油藏活性水采油机理. 大庆石油地质与开发,2017,36(5):169-174. CHEN T,YANG Z M,WANG X W,et al. Oil displacing mechanism for the active water flooding in tight oil reservoirs. Petroleum Geology & Oilfield Development in Daqing,2017,36(5):169-174.
[4] 潘伟义,郎东江,伦增珉,等. 致密油藏不同开发方式原油动用规律实验研究. CT理论与应用研究,2016,25(6):647-652. PAN W Y,LANG D J,LUN Z M,et al. Experimental study of effective displacement characteristics of different displacing methods in tight oil reservoir. Computerized Tomography Theory and Applications,2016,25(6):647-652.
[5] 李滢,杨胜来,任双双,等. 致密油储层基质块渗流特征. 断块油气田,2016,23(3):342-345. LI Y,YANG S L,REN S S,et al. Percolation characteristics of matrix block in tight oil reservoir. Fault-Block Oil and Gas Field,2016,23(3):342-345.
[6] 徐波,王建,于乐丹,等. 致密油储层成岩相类型及其对产能的影响:以鄂尔多斯盆地姜家川地区长8储层为例. 岩性油气藏,2018,30(6):112-119. XU B,WANG J,YU L D,et al. Diagenetic facies types of tight reservoir and its effects on productivity:a case of Chang 8 reservoir in Jiangjiachuan area,Ordos Basin. Lithologic Reservoirs, 2018,30(6):112-119.
[7] 苏皓,雷征东,张荻萩,等. 致密油藏体积压裂水平井参数优化研究. 岩性油气藏,2018,30(4):142-150. SU H,LEI Z D,ZHANG D Q,et al. Volume fracturing parameters optimization of horizontal well in tight reservoir. Lithologic Reservoirs,2018,30(4):142-150.
[8] 任大忠,张晖,周然,等. 塔里木盆地克深地区巴什基奇克组致密砂岩储层敏感性研究. 岩性油气藏,2018,30(6):30-39. REN D Z,ZHANG H,ZHOU R,et al. Sensitivity of tight sandstone reservoir of Bashijiqike Formation in Keshen area,Tarim Basin. Lithologic Reservoirs,2018,30(6):30-39.
[9] 郭钢,薛小佳,李楷,等. 压裂液存留液对致密油储层渗吸替油效果的影响. 钻井液与完井液,2016,33(6):121-126. GUO G,XUE X J,LI K,et al. Effect of retained fracturing fluid on the imbibition oil displacement efficiency of tight oil reservoir. Drilling Fluid & Completion Fluid,2016,33(6):121-126.
[10] 尚庆华,王玉霞,黄春霞,等. 致密砂岩油藏超临界与非超临界CO2驱油特征. 岩性油气藏,2018,30(3):156-161. SHANG Q H,WANG Y X,HUANG C X,et al. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir. Lithologic Reservoirs,2018,30(3):156-161.
[11] SCHNEISING O,BURROWS J P,DICKERSON R R,et al. Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations. Earths Future,2015,2(10):548-558.
[12] DEMEULENAERE G. Development of Shale gas & tight oil:Miracle or bubble? International Journal of Radiation Oncology Biology Physics,2013,78(3):S717-S718.
[13] CHEN J,WU Z,JINGBO N. Classification prediction of oil production in early development stage of tight oil resource play in North America. Unconventional Oil & Gas,2015,71(8):236-236.
[14] WANG J,LIU H,XIA J,et al. Mechanism simulation of oil displacement by imbibition in fractured reservoirs. Petroleum Exploration and Development,2017,44(5):805-814.
[15] 崔鹏兴,刘双双,党海龙. 低渗透油藏渗吸作用及其影响因素研究. 非常规油气,2017,4(1):88-93. CUI P X,LIU S S,DANG H L. The study of imbibition in low permeability reservoir and its influence factors. Unconventional Oil & Gas,2017,4(1):88-93.
[16] 苏煜彬,林冠宇,韩悦. 表面活性剂对致密砂岩储层自发渗吸驱油的影响. 断块油气田,2017,24(5):691-694. SU Y B,LIN G Y,HAN Y. Influence of surfactant on spontaneous imbibition in tight sandstone reservoir and its application. Fault-Block Oil and Gas Field,2017,24(5):691-694.
[17] GE J J,ZHANG G C,JIANG P,et al. Study on influencing factors of chemical flooding for heavy oil. Journal of Dispersion Science & Technology,2012,33(2):278-286.
[18] MILTER J,AUSTAD T. Chemical flooding of oil reservoirs 7. Oil expulsion by spontaneous imbibition of brine with and without surfactant in mixed-wet,low permeability chalk material. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1996,117(1/2):109-115.
[19] 刘向君,戴岑璞. 低渗透砂岩渗吸驱油规律实验研究. 钻采工艺,2008,31(6):110-112. LIU X J,DAI C P. Experimental study of imbibition law in low permeability sandstone oilfield. Drilling & Production Technology,2008,31(6):110-112.
[20] 韦青,李治平,王香增,等. 裂缝性致密砂岩储层渗吸机理及影响因素:以鄂尔多斯盆地吴起地区长8储层为例. 油气地质与采收率,2016,23(4):102-107. WEI Q,LI Z P,WANG X Z,et al. Mechanism and influence factors of imbibition in fractured tight sandstone reservoir:an example from Chang 8 reservoir of Wuqi area in Ordos Basin. Petroleum Geology and Recovery Efficiency,2016,23(4):102- 107.
[21] 党海龙,王小锋,段伟,等. 鄂尔多斯盆地裂缝性低渗透油藏渗吸驱油研究. 断块油气田,2017,24(5):687-690. DANG H L,WANG X F,DUAN W,et al. Study on imbibition flooding in fractured low-permeability reservoir of Ordos Basin. Fault-Block Oil and Gas Field,2017,24(5):687-690.
[22] 周万富,王鑫,卢祥国,等. 致密油储层动态渗吸采油效果及其影响因素. 大庆石油地质与开发,2017,36(3):148-155. ZHOU W F,WANG X,LU X G,et al. Effects of the dynamic imbibition recovery and its influencing factors for the tight oil reservoirs. Petroleum Geology & Oilfield Development in Daqing,2017,36(3):148-155.
[23] 谷潇雨,王朝明,蒲春生,等. 裂缝性致密油藏水驱动态渗吸特征实验研究:以鄂尔多斯盆地富县地区长8储层为例. 西安石油大学学报(自然科学版),2018,33(3):37-43. GU X Y,WANG C M,PU C S,et al. Experimental study on dynamic imbibition characteristics of fractured tight sandstone reservoir during water flooding:an example from Chang 8 reservoir of Fuxian area in Ordos Basin. Journal of Xi'an Shiyou University(Natural Science),2018,33(3):37-43.
[1] 田亚, 李军辉, 陈方举, 李跃, 刘华晔, 邹越, 张晓扬. 海拉尔盆地中部断陷带下白垩统南屯组致密储层特征及有利区预测[J]. 岩性油气藏, 2024, 36(4): 136-146.
[2] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[3] 秦正山, 何勇明, 丁洋洋, 李柏宏, 孙双双. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188.
[4] 谢瑞, 张尚锋, 周林, 刘皓天, 姚明君, 蒋雪桂. 川东地区侏罗系自流井组大安寨段致密储层油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 108-119.
[5] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[6] 黄芸, 杨德相, 李玉帮, 胡明毅, 季汉成, 樊杰, 张晓芳, 王元杰. 冀中坳陷杨税务奥陶系深潜山储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 70-80.
[7] 安杰, 唐梅荣, 曹宗熊, 王文雄, 陈文斌, 吴顺林. 超低渗透低压油藏水平井转变开发方式试验[J]. 岩性油气藏, 2019, 31(5): 134-140.
[8] 刘冬冬, 杨东旭, 张子亚, 张晨, 罗群, 潘占昆, 黄治鑫. 基于常规测井和成像测井的致密储层裂缝识别方法——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2019, 31(3): 76-85.
[9] 景紫岩, 张佳, 李国斌, 竺彪, 韩国庆, 刘双双. 泡沫混排携砂解堵机理及影响因素[J]. 岩性油气藏, 2018, 30(5): 154-160.
[10] 苏皓, 雷征东, 张荻萩, 李俊超, 鞠斌山, 张泽人. 致密油藏体积压裂水平井参数优化研究[J]. 岩性油气藏, 2018, 30(4): 140-148.
[11] 苑伯超, 肖文华, 魏浩元, 张楠, 邓毅林, 张光伟. 酒泉盆地鸭儿峡地区白垩系下沟组砂砾岩储层特征及主控因素[J]. 岩性油气藏, 2018, 30(3): 61-70.
[12] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究——以吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2018, 30(1): 140-149.
[13] 崔周旗, 李莉, 王宏霞, 王元杰, 郭柳汐, 侯凤梅. 霸县凹陷古近系深层砂岩储层特征与岩性油气藏勘探[J]. 岩性油气藏, 2017, 29(2): 51-58.
[14] 王维斌, 朱静, 马文忠, 冯顺彦, 刘艳妮, 赵静. 鄂尔多斯盆地周家湾地区长8致密砂岩储层特征及影响因素[J]. 岩性油气藏, 2017, 29(1): 51-58.
[15] 寇 雨,周文,赵毅楠,陈文玲,李娜,徐 浩. 鄂尔多斯盆地延长组长7段陆相页岩吸附特性及控制因素[J]. 岩性油气藏, 2016, 28(6): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .