岩性油气藏 ›› 2019, Vol. 31 ›› Issue (5): 121–128.doi: 10.12108/yxyqc.20190514

• 油气田开发 • 上一篇    下一篇

澳大利亚M区块低煤阶煤层气井产能主控因素及合理开发方式

苏朋辉1, 夏朝辉1, 刘玲莉1, 段利江1, 王建俊1, 肖文杰2   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 西安石油大学 地球科学与工程学院, 西安 710300
  • 收稿日期:2019-03-10 修回日期:2019-05-22 出版日期:2019-09-21 发布日期:2019-09-16
  • 作者简介:苏朋辉(1989-),男,中国石油勘探开发研究院在读博士研究生,研究方向为非常规油气田数值模拟及动态分析。地址:(100083)北京市海淀区学院路20号石油大院59号楼。Email:suphui317@petrochina.com.cn。
  • 基金资助:
    国家科技重大专项“海外重点探区目标评价与未来领域选区选带研究”(编号:2016ZX05029005)资助

Main controlling factors of productivity and reasonable development methods of low-rank coalbed methane in block M of Australia

SU Penghui1, XIA Zhaohui1, LIU Lingli1, DUAN Lijiang1, WANG Jianjun1, XIAO Wenjie2   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. College of Earth Sciences & Engineering, Xi'an Shiyou University, Xi'an 710300, China
  • Received:2019-03-10 Revised:2019-05-22 Online:2019-09-21 Published:2019-09-16

摘要: 为了研究低煤阶煤储层资源,结合低煤阶煤层气井的生产特征和气田地质模型资料,建立了低煤阶煤层气井数值模型,并进行了产能影响因素敏感性分析,明确了影响煤层气井产能的主控因素,基于储层物性划分,开展了低煤阶煤层气合理开发方式的优化研究。结果表明:合采井纵向穿过J和T共2套煤层组,纵向储层控制程度高、排水量大,有助于降压解吸,增加单井产量;影响低煤阶煤层气井产能的主控因素有累计净厚度、渗透率、含气量、井距和含气饱和度;埋深< 250 m的储层最优井距为1 500 m,埋深为250~350 m的储层最优井距为1 200 m,埋深为350~400 m和埋深为400~450 m的储层最优井距为1 000 m,埋深450~600 m的储层最优井距为800 m,埋深> 650 m的储层最优井距为700 m。该项研究为气田的有利区筛选和开发优化提供了理论基础和技术支撑。

关键词: 低煤阶, 煤层气, 产能主控因素, 井距, 澳大利亚

Abstract: Low-rank CBM reservoir has rich resources and huge development value. Combined with the production characteristics of low-rank coalbed methane wells and geological model of gas field,a numerical model of lowrank coalbed methane wells was established,the sensitivity analysis of the factors affecting the productivity was carried out,and the main controlling factors affecting the productivity of coalbed methane wells were defined. Based on the division of reservoir physical properties,the optimization study of reasonable development methods of low-rank coalbed methane was conducted. The results show that the commingled producing well passing through JJ and TT two sets of coal seam groups longitudinally had high degree of vertical reservoir control and large drainage,which is helpful for pressure reduction and desorption. Therefore,the commingled wells greatly increased the average single well production. The main controlling factors affecting the productivity of low-rank coalbed methane wells are cumulative net thickness,permeability, gas content, well spacing and gas saturation. Through the optimization analysis of well spacing for six types of reservoir,for the reservoirs with buried depth less than 250 m,the optimal well spacing is 1 500 m;for the reservoirs with buried depth of 250-350 m,the optimal well spacing is 1 200 m;for the reservoirs with buried depth of 350-450 m,the optimal well spacing is 1 000 m;for the reservoirs with buried depth of 450-600 m,the optimal well spacing is 8 00 m; for the reservoirs with buried depth greater than 600 m,the optimal well spacing is 700 m. This study could provide theoretical basis and technical support for the selection and development optimization of favorable areas in gas fields.

Key words: low-rank coal, coalbed methane, main controlling factors of productivity, well spacing, Australia

中图分类号: 

  • TE122
[1] 侯海海,邵龙义,唐跃,等.我国低煤阶煤层气成因类型及成藏模式研究.中国矿业,2014,23(7):66-69. HOU H H,SHAO LY,TANG Y,et al. Study on coal bed methane genetic types and formation models of low rank coal in China. China Mining Magazine,2014,23(7):66-69.
[2] 侯海海,邵龙义,唐跃,等.基于多层次模糊数学的中国低煤阶煤层气选区评价标准:以吐哈盆地为例.中国地质,2014, 41(3):1002-1009. HOU H H,SHAO L Y,TANG Y,et al. Criteria for selected areas evaluation of low rank CBM based on multi-layered fuzzy mathematics:a case study of Turpan-Hami Basin. Geology in China, 2014,41(3):1002-1009.
[3] 庞涛,黄军平,周越骑,等.低煤阶煤层气井排采初期压降幅度研究.中国煤炭地质,2015,27(3):20-23. PANG T,HUANG J P,ZHOU Y Q,et al. Study on pressure drop extent during initial drainage stage in low rank coal CBM wells. Coal Geology of China,2015,27(3):20-23.
[4] 高为,金军,易同生,等.黔北小林华矿区高阶煤层气藏特征及开采技术.岩性油气藏,2017,29(5):140-147. GAO W,JIN J,YI T S,et al. Enrichment mechanism and mining technology of high rank coalbed methane in Xiaolinhua coal mine,northern Guizhou. Lithologic Reservoirs,2017,29(5):140-147.
[5] 刘爱华,傅雪海,梁文庆,等.不同煤阶煤孔隙分布特征及其对煤层气开发的影响. 煤炭科学技术,2013,41(4):104-108. LIU A H,FU X H,LIANG W Q,et al. Pore distribution features of different rank coal and influences to coal bed methane development. Coal Science and Technology,2013,41(4):104-108.
[6] 桑浩田,桑树勋,周效志,等.沁水盆地南部煤层气井生产历史拟合与井网优化研究.山东科技大学学报(自然科学版), 2011,30(4):58-65. SANG H T,SANG S X,ZHOU X Z,et al. Production history fitting and well pattern optimization in coalbed methane well at southern part of Qinshui Basin. Journal of Shandong University of Science and Technology(Natural Science Edition),2011,30(4):58-65.
[7] LEE J W,CHUNG S W,YOO S O,et al. Characteristics of pneumatic transport of low rank coal for the application of fast fluidized bed gasification. International Society of Offshore and Polar Engineers,2013.
[8] DING W,SUN H C,XIA Z H,et al. Peak gas production analysis and influencing factors study of coal bed methane well. Advanced Materials Research,2014,30(2):1388-1393.
[9] ZHAO C B,XIA Z H,ZHENG,K N,et al. Integrated assessment of pilot performance of surface to in-seam wells to de-risk and quantify subsurface uncertainty for a coalbed methane project:an example from the Bowen Basin in Australia. Society of Petroleum Engineers,2014.
[10] 吴雅琴,邵国良,徐耀辉,等.煤层气开发地质单元划分及开发方式优化:以沁水盆地郑庄区块为例.岩性油气藏,2016, 28(6):125-133. WU Y Q,SHAO G L,XU Y H,et al. Geological unit division and development model optimization of coalbed methane:a case study from Zhengzhuang block in Qinshui Basin. Lithologic Reservoirs,2016,28(6):125-133.
[11] PACKHAM R,CINAR Y,MOREBY R. Simulation of an enhanced gas recovery field trial for coal mine gas management. International Journal of Coal Geology,2011,85(3/4):247-256.
[12] 艾林,周明顺,张杰,等.基于煤岩脆性指数的煤体结构测井定量判识.岩性油气藏,2017,29(2):139-144. AI L,ZHOU M S,ZHANG J,et al. Quantitative identification of coal structure based on coal rock brittleness index by logging data. Lithologic Reservoirs,2017,29(2):139-144.
[13] 淮银超,张铭,谭玉涵,等.澳大利亚东部S区块煤层气储层特征及有利区预测.岩性油气藏,2019,31(1):49-56. HUAI Y C,ZHANG M,TAN Y H,et al. Reservoir characteristics and favorable areas prediction of coalbed methane in S block, eastern Australia. Lithologic Reservoirs,2019,31(1):49-56.
[14] 未志杰,康晓东,刘玉洋,等.煤层气藏全流固耦合数学模型. 岩性油气藏,2019,31(2):151-158. WEI Z J,KANG X D,LIU Y Y,et al. A fully coupled fluid flow and geomechanics model for coalbed methane reservoir. Lithologic Reservoirs,2019,31(2):151-158.
[15] 聂志宏,巢海燕,刘莹,等.鄂尔多斯盆地东缘深部煤层气生产特征及开发对策:以大宁-吉县区块为例.煤炭学报,2018, 43(6):1738-1746. NIE Z H,CHAO H Y,LIU Y,et al. Development strategy and production characteristics of deep coalbed methane in the east Ordos Basin:Taking Daning-Jixian block for example. Journal of China Coal Society,2018,43(6):1738-1746.
[16] 冯青,王涛,杨浩,等.煤层气压裂井裂缝参数优化及效果评价.天然气地球科学,2018,29(11):1639-1646. FENG Q,WANG T,YANG H,et al. Fracturing parameters optimization and evaluation of CBM fractured wells. Natural Gas Geoscience,2018,29(11):1639-1646.
[17] 赵欣,姜波,张尚锟,等.鄂尔多斯盆地东缘三区块煤层气井产能主控因素及开发策略. 石油学报,2017,38(11):1310-1319. ZHAO X,JIANG B,ZHANG S K,et al. Main controlling factors of productivity and development strategy of CBM wells in Block 3 in the eastern margin of Ordos Basin. Act Petrolei Sinica, 2017,38(11):1310-1319.
[18] 赵欣,姜波,徐强,等.煤层气开发井网设计与优化部署.石油勘探与开发,2016,43(1):84-90. ZHAO X,JIANG B,XU Q,et al. Well pattern design and deployment for coalbed methane development. Petroleum Exploration and Development,2016,43(1):84-90.
[19] 秦勇,申建.论深部煤层气基本地质问题.石油学报,2016,37(1):125-136. QIN Y,SHEN J. On the fundamental issues of deep coalbed geology. Acta Petrolei Sinica,2016,37(1):125-136.
[1] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[2] 未志杰, 康晓东, 刘玉洋, 曾杨. 煤层气藏全流固耦合数学模型[J]. 岩性油气藏, 2019, 31(2): 151-158.
[3] 淮银超, 张铭, 谭玉涵, 王鑫. 澳大利亚东部S区块煤层气储层特征及有利区预测[J]. 岩性油气藏, 2019, 31(1): 49-56.
[4] 陶帅, 郝永卯, 周杰, 曹小朋, 黎晓舟. 透镜体低渗透岩性油藏合理井网井距研究[J]. 岩性油气藏, 2018, 30(5): 116-123.
[5] 潘有军, 荆文波, 徐赢, 赵嗣君, 李继成, 陶登海. 火山岩油藏水平井体积压裂产能预测研究[J]. 岩性油气藏, 2018, 30(3): 159-164.
[6] 高为, 金军, 易同生, 赵凌云, 张曼婷, 郑德志. 黔北小林华矿区高阶煤层气藏特征及开采技术[J]. 岩性油气藏, 2017, 29(5): 140-147.
[7] 艾林, 周明顺, 张杰, 梁霄, 钱博文, 刘迪仁. 基于煤岩脆性指数的煤体结构测井定量判识[J]. 岩性油气藏, 2017, 29(2): 139-144.
[8] 李传亮, 朱苏阳, 彭朝阳, 王凤兰, 杜庆龙, 由春梅. 煤层气井突然产气机理分析[J]. 岩性油气藏, 2017, 29(2): 145-149.
[9] 张廷山, 何映颉, 伍坤宇, 林丹, 张朝. 筠连地区上二叠统宣威组沉积相及聚煤控制因素[J]. 岩性油气藏, 2017, 29(1): 1-10.
[10] 吴雅琴,邵国良,徐耀辉,王 乔,刘振兴,帅 哲. 沁水盆地郑庄区块煤层气开发地质单元划分及开发方式优化研究[J]. 岩性油气藏, 2016, 28(6): 125-133.
[11] 冯小英,秦凤启,唐钰童,刘 慧,王 亚 . 沁水盆地煤层含气后的 AVO 响应特征[J]. 岩性油气藏, 2015, 27(4): 103-108.
[12] 伊 伟1,熊先钺1,王 伟1,刘 玲2. 鄂尔多斯盆地合阳地区煤层气赋存特征研究[J]. 岩性油气藏, 2015, 27(2): 38-45.
[13] 闫 霞,李小军,赵 辉,张 伟,王泽斌,毛得雷. 煤层气井井间干扰研究及应用[J]. 岩性油气藏, 2015, 27(2): 126-132.
[14] Yuriy Tyapkin, Iana Mendrii. 改进的地震相干体算法及其应用———以乌克兰顿涅茨盆地裂缝型储层为例[J]. 岩性油气藏, 2013, 25(5): 8-12.
[15] 张海茹,李 昊. 煤层气峰值产量拟合及产量动态预测方法研究[J]. 岩性油气藏, 2013, 25(4): 116-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .