岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 181–188.doi: 10.12108/yxyqc.20210518

• 油气田开发 • 上一篇    

煤层气藏强化采收全流固耦合模型

未志杰1,2, 康晓东1,2   

  1. 1. 海洋石油高效开发国家重点实验室, 北京 100028;
    2. 中海油研究总院有限责任公司, 北京 100028
  • 收稿日期:2021-03-12 修回日期:2021-04-29 出版日期:2021-10-01 发布日期:2021-09-30
  • 作者简介:未志杰(1984-),男,博士,高级工程师,主要从事海上油气田提高采收率方面的研究工作。地址:(100028)北京市朝阳区太阳宫南街6号院中海油大厦B座710室。Email:weizj1985@163.com。
  • 基金资助:
    “十三五”国家重大科技专项“海上油田化学驱油技术”(编号:2016ZX05025-003)资助

A fully coupled fluid flow and geomechanics model for enhanced coalbed methane recovery

WEI Zhijie1,2, KANG Xiaodong1,2   

  1. 1. State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China;
    2. CNOOC Research Institute Co., Ltd., Beijing 100028, China
  • Received:2021-03-12 Revised:2021-04-29 Online:2021-10-01 Published:2021-09-30

摘要: 为了准确表征煤层注气强化采收过程中复杂的地质力学效应,同时考虑多孔介质、多相、多组分、多过程物质运移特征,构建了适用于强化煤层气采收(ECBM)与CO2地质埋存的全流固耦合数学模型,开发了基于全隐式有限差分的数值模拟算法,进而应用该模型与目前常用煤层气模拟软件进行了系统对比和剖析,并对加拿大FBV 4 A井注烟道气强化采收矿场试验开展了历史拟合。结果表明,所构建的全流固耦合模型能够更加准确地表征煤层注气强化采收过程中复杂的流固耦合作用及流体多组分、多过程运移规律,可准确预测储层孔渗等物性参数变化及煤层气产能,具有较高的矿场应用价值。

关键词: 煤层气, 强化采收, 流固耦合, 地质力学效应, 基质膨胀/收缩

Abstract: In order to capture the complicated geomechanical effects more accurately during enhanced coalbed methane recovery, a fully coupled fluid flow and geomechanics model was proposed for ECBM and CO2 underground storage with consideration of multi-component, multi-phase, multi-process transportation in porous media, which consist of poroelastic geomechanical model and full component fluid-flow model. The corresponding numerical solver was developed by the fully implicit finite difference method. The fully coupled model and algorithm was applied to make a systematic comparison and analysis with the commonly used commercial ECBM/CBM software, and to historical match field data of an enhanced CBM recovery pilot by flue gas injection in FBV 4 A. The results show that the model proposed can more accurately capture the fully coupling effects of geomechanics and fluid flow and multi-component multi-process migration in coal seam, which can provide better prediction of reservoir properties and CBM production, indicating its value in field application.

Key words: coalbed methane, enhanced recovery, coupled fluid flow and geomechanics, geomechanics effect, matrix swelling/shrinkage

中图分类号: 

  • TE357
[1] SCHEPERS K, OUDINOT A, RIPEPI N. Enhanced gas recovery and CO2 storage in coalbed-methane reservoirs:Optimized injected-gas composition for mature basins of various coal rank. SPE 139723, 2010.
[2] WEI Z J, ZHANG D X. Coupled fluid flow and geomechanics for triple-porosity/dual-permeability modeling of coalbed methane recovery. International Journal of Rock Mechanics & Mining Sciences, 2010, 47(8):1242-1253.
[3] 杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征.岩性油气藏, 2020, 32(3):14-23. YANG F, HE D, MA D M, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir. Lithologic Reservoirs, 2020, 32(3):14-23.
[4] 孙政, 李相方, 徐兵祥, 等.一种表征煤储层压力与流体饱和度关系的数学模型.中国科学:技术科学, 2018, 48(5):457-464. SUN Z, LI X F, XU B X, et al. A mathematic model for characterizing the relationship between coal reservoir pressure and fluid saturation. Scientia Sinica Technologica, 2018, 48(5):457-464.
[5] 孙超群, 李术才, 李华銮, 等. 煤层气藏应力-渗流流固耦合模型及SPH求解.天然气地球科学, 2017, 28(2):305-312. SUN C Q, LI S C, LI H L, et al. Stress-seepage hydro-mechanical coupling model of coal-bed methane reservoir and its SPH analysis. Natural Gas Geoscience, 2017, 28(2):305-312.
[6] PALMER I. Permeability changes in coal:Analytical modeling. International Journal of Coal Geology, 2009, 77(2):119-126.
[7] PEKOT L J, REEVES S R. Modeling the effects of matrix shrinkage and differential swelling on coalbed methane recovery and carbon sequestration. The Proceedings of the International Coalbed Methane Symposium. Tuscaloosa:University of Alabama, 2003:81-90.
[8] SHI J Q, DURUCAN S. Exponential growth in San Juan Basin Fruitland coalbed permeability with reservoir drawdown:Model match and new insights. SPE Reservoir Evaluation & Engineering, 2010, 13(6):914-925.
[9] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs. SPE Journal, 1963, 3(3):245-255.
[10] 罗群, 王井伶, 罗家国, 等. "非常规油气缝-孔耦合富烃假说"概述.岩性油气藏, 2019, 31(4):1-12. LUO Q, WANG J L, LUO J G, et al. Hypothesis outline of fracture-pore coupling enriching hydrocarbon on unconventional oil and gas. Lithologic Reservoirs, 2019, 31(4):1-12.
[11] 姚海鹏, 于东方, 李玲, 等.内蒙古地区典型煤储层吸附特征分析.岩性油气藏, 2021, 33(2):1-8. YAO H P, YU D F, LI L, et al. Adsorption characteristics of typical coal reservoirs in Inner Mongolia. Lithologic Reservoirs, 2021, 33(2):1-8.
[12] SORIEDE I, WHITSON C H. Peng-Robinson predictions for hydrocarbons, CO2, N2 and H2S with pure water. Fluid Phase Equilibria, 1992, 77(5):217-240.
[13] YANG R T. Gas separation by adsorption processes. Johannesburg:Butterworth-Heinemann Publisher, 1987.
[14] CLARKSON C R, BUSTIN R M. Binary gas adsorption/desorption isotherms:Effect of moisture and coal composition upon carbon dioxide selectivity over methane. International Journal of Coal Geology, 2000, 42(4):241-271.
[15] GASEM K A, PAN Z, MOHAMMAD S, et al. Two-dimensional equation-of-state modeling of adsorption of coalbed methane gases. AAPG Special Volumes, 2009, 59(9):475-497.
[16] LAW D H, VAN D M, GUNTER W D. Numerical simulator comparison study for enhanced coalbed methane recovery processes, part I:Pure carbon dioxide injection. SPE 75669, 2002.
[17] ROBERTSON E P, CHRISTIANSEN R L. Modeling permeability in coal using sorption-induced strain data. SPE 97068, 2005.
[18] CUI X, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams. AAPG Bulletin, 2005, 89(9):1181-1202.
[19] 未志杰, 康晓东, 刘玉洋, 等.煤层气藏全流固耦合数学模型. 岩性油气藏, 2019, 31(2):151-158. WEI Z J, KANG X D, LIU Y Y, et al. A fully coupled fluid flow and geomechanics model for coalbed methane reservoir. Lithologic Reservoirs, 2019, 31(2):151-158.
[20] 范超军, 李胜, 罗明坤, 等.基于流-固-热耦合的深部煤层气抽采数值模拟.煤炭学报, 2016, 41(12):3076-3085. FAN C J, LI S, LUO M K, et al. Deep CBM extraction numerical simulation based on hydraulic-mechanical-thermal coupled model. Journal of China Coal Society, 2016, 41(12):3076-3085.
[21] 吴信波, 李贵红, 刘钰辉, 等.低阶煤煤体变形特征及渗流规律实验研究.科学技术与工程, 2021, 21(3):906-910. WU X B, LI G H, LIU Y H, et al. Experimental study on deformation characteristics and seepage law of low rank coal. Science Technology and Engineering, 2021, 21(3):906-910.
[22] WEI Z J, ZHANG D X. A fully coupled multiphase multicomponent flow and geomechanics model for enhanced coalbedmethane recovery and CO2 storage. SPE Journal, 2013, 18(3):448-467.
[23] 李传亮, 朱苏阳, 彭朝阳, 等.煤层气井突然产气机理分析.岩性油气藏, 2017, 29(2):145-149. LI C L, ZHU S Y, PENG C Y, et al. Mechanism of gas production rate outburst in coalbed methane wells. Lithologic Reservoirs, 2017, 29(2):145-149.
[24] 胡海洋, 倪小明, 朱阳稳, 等. 煤层气井渗透率时空变化规律研究及应用.特种油气藏, 2016, 25(3):106-109. HU H Y, NI X M, ZHU Y W, et al. Spatial-temporal permeability and its application in CBM well. Special Oil and Gas Reservoir, 2016, 25(3):106-109.
[25] 张海茹, 李昊.煤层气峰值产量拟合及产量动态预测方法研究.岩性油气藏, 2013, 25(4):116-118. ZHANG H R, LI H. Study on coalbed methane peak production fitting and production forecast by different dynamic analysis methods. Lithologic Reservoirs, 2013, 25(4):116-118.
[26] CUI X. Sequestration by sorption on organic matter. paper presented at the third intl. Forum on geologic sequestration of CO2 in deep, unminable coalseams(coal-seq Ⅲ), Baltimore, Maryland, 2004.
[27] CUI X, BUSTIN R M, CHIKATAMARLA L. Adsorption-induced coal swelling and stress, implications for methane production and acid gas sequestration into coal seams. Journal of Geophysical Research-Solid Earth, 2007, 112:102-117.
[1] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[2] 苏朋辉, 夏朝辉, 刘玲莉, 段利江, 王建俊, 肖文杰. 澳大利亚M区块低煤阶煤层气井产能主控因素及合理开发方式[J]. 岩性油气藏, 2019, 31(5): 121-128.
[3] 未志杰, 康晓东, 刘玉洋, 曾杨. 煤层气藏全流固耦合数学模型[J]. 岩性油气藏, 2019, 31(2): 151-158.
[4] 淮银超, 张铭, 谭玉涵, 王鑫. 澳大利亚东部S区块煤层气储层特征及有利区预测[J]. 岩性油气藏, 2019, 31(1): 49-56.
[5] 高为, 金军, 易同生, 赵凌云, 张曼婷, 郑德志. 黔北小林华矿区高阶煤层气藏特征及开采技术[J]. 岩性油气藏, 2017, 29(5): 140-147.
[6] 艾林, 周明顺, 张杰, 梁霄, 钱博文, 刘迪仁. 基于煤岩脆性指数的煤体结构测井定量判识[J]. 岩性油气藏, 2017, 29(2): 139-144.
[7] 李传亮, 朱苏阳, 彭朝阳, 王凤兰, 杜庆龙, 由春梅. 煤层气井突然产气机理分析[J]. 岩性油气藏, 2017, 29(2): 145-149.
[8] 张廷山, 何映颉, 伍坤宇, 林丹, 张朝. 筠连地区上二叠统宣威组沉积相及聚煤控制因素[J]. 岩性油气藏, 2017, 29(1): 1-10.
[9] 吴雅琴,邵国良,徐耀辉,王 乔,刘振兴,帅 哲. 沁水盆地郑庄区块煤层气开发地质单元划分及开发方式优化研究[J]. 岩性油气藏, 2016, 28(6): 125-133.
[10] 冯小英,秦凤启,唐钰童,刘 慧,王 亚 . 沁水盆地煤层含气后的 AVO 响应特征[J]. 岩性油气藏, 2015, 27(4): 103-108.
[11] 伊 伟1,熊先钺1,王 伟1,刘 玲2. 鄂尔多斯盆地合阳地区煤层气赋存特征研究[J]. 岩性油气藏, 2015, 27(2): 38-45.
[12] 闫 霞,李小军,赵 辉,张 伟,王泽斌,毛得雷. 煤层气井井间干扰研究及应用[J]. 岩性油气藏, 2015, 27(2): 126-132.
[13] Yuriy Tyapkin, Iana Mendrii. 改进的地震相干体算法及其应用———以乌克兰顿涅茨盆地裂缝型储层为例[J]. 岩性油气藏, 2013, 25(5): 8-12.
[14] 张海茹,李 昊. 煤层气峰值产量拟合及产量动态预测方法研究[J]. 岩性油气藏, 2013, 25(4): 116-118.
[15] 李传亮,彭朝阳,朱苏阳. 煤层气其实是吸附气[J]. 岩性油气藏, 2013, 25(2): 112-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!