岩性油气藏 ›› 2018, Vol. 30 ›› Issue (1): 140–149.doi: 10.3969/j.issn.1673-8926.2018.01.014

• 油气田开发 • 上一篇    下一篇

致密砂岩储层可动流体分布及影响因素研究——以吉木萨尔凹陷芦草沟组为例

李闽, 王浩, 陈猛   

  1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500
  • 收稿日期:2017-05-12 修回日期:2017-08-23 出版日期:2018-01-21 发布日期:2018-01-21
  • 第一作者:李闽(1962-),男,博士,教授,博士生导师,主要从事非常规致密油气渗流机理与储层微观孔隙表征等方面的教学和科研工作。地址:(610500)四川省成都市新都区新都大道8号西南石油大学油气藏地质及开发工程国家重点实验室。Email:hytlxf@swpu.edu.cn。
  • 基金资助:
    国家重点基础研究发展(973计划)项目“致密油多相多尺度流动机理及渗流理论研究”(编号:2015CB250902)和石油化工联合基金(A类)项目“致密气多相多尺度流动规律及跨尺度耦合渗流”(编号:U1562217)联合资助

Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs: a case study of Lucaogou Formation in Jimsar Sag,NW China

LI Min, WANG Hao, CHEN Meng   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
  • Received:2017-05-12 Revised:2017-08-23 Online:2018-01-21 Published:2018-01-21

摘要: 明确可动流体含量、分布及影响因素是有效评价致密储层开发潜能的基础。选取准噶尔盆地芦草沟组21块致密砂岩样品,采用核磁共振T2谱分析和离心实验相结合的方法,测量岩样在不同含水饱和度下的核磁共振T2谱,并辅以铸体薄片和扫描电镜技术分析储层可动流体含量差异的影响因素。结果表明:储层岩样核磁共振T2谱主要呈现为5种形态,复杂的储层微观特征和孔喉结构均是导致核磁共振T2谱形态多样的主要原因;储层建立束缚水饱和度的最佳离心力是400~450 psi,计算得到可动流体饱和度为29.44%~68.92%,平均值为46.69%,不同岩样可动流体含量和分布均有明显差异,可动流体分布的有效孔喉半径下限约为50 nm,储层主流喉道半径为70~200 nm;可动流体含量和物性参数之间的关系表明,对于物性较差的储层,渗透率是决定可动流体含量的主要因素,但对于物性较好的储层,渗透率对可动流体含量的影响较小;孔隙类型、形状及表面粗糙程度均会影响储层束缚水含量和分布;储层次生孔隙的发育程度及分布、孔喉半径大小及连通性、黏土矿物的充填程度及产状和裂缝的发育情况都会对可动流体含量产生影响。该研究成果可为致密储层开发潜力评价提供依据。

关键词: 海底扇, 坳陷型海盆, 物源体系, 三亚组, 琼东南盆地

Abstract: Determining the content,distribution and influencing factors of movable fluid is the basis for effective evaluation of the development potential of tight reservoir. 21 samples of tight sandstone reservoirs of Lucaogou Formation in Junggar Basin were selected to measure the NMR T2 spectrum at different degrees of water saturation by using NMR T2 spectrum analysis and centrifuge tests,and the influencing factors of the differences in the movable fluid were analyzed by cast thin section and scanning electron microscopy. The results show that the T2 spectrum of reservoir rocks is mainly manifested by five forms,and the complexity of reservoir micro-characteristics and pore throat structure are the main reasons for the various types of NMR T2 spectrum. The best centrifugal force for tight oil reservoir to make bound water state is 400-450 psi,the saturation of movable fluid is 29.44%-68.92%,and the average value is 46.69%. The content and distribution of the movable fluid in different rock samples are obviously different,and the minimum of pore throat radius of the movable fluid distribution is about 50 nm,and the mainstream throat radius is 70-200 nm. The relationship between movable fluid content and physical property shows that for the reservoirs with poor physical properties,the permeability is the main controlling factors,but for the reservoirs with better physical properties,the impact of permeability on the movable fluid content is small. The pore type,shape and surface roughness all affect the content and distribution of the bound water. The development and distribution of secondary pores,the size of pore throat and its connectivity,the filling degree and occurrence of clay minerals and the development of cracks,are the influencing factors of movable fluid content. These results can provide a basis for evaluating the development potential of tight reservoirs.

Key words: submarine fan, deepwater exploration, provenance system, Sanya Formation, Qiongdongnan Basin

中图分类号: 

  • TE122.2+3
[1] 刘伟,林承焰,王国民,等.柴西北地区油泉子油田低渗透储层特征与成因分析.石油学报,2009,30(3):417-421. LIU W,LIN C Y,WANG G M,et al. Characteristics of lowpermeability reservoir and its origin in Youquanzi Oilfield in the northwest part of Qaidam Basin. Acta Petrolei Sinica,2009, 30(3):417-421.
[2] 杨晓萍,赵文智,邹才能,等.低渗透储层成因机理及优质储层形成与分布.石油学报,2007,28(4):57-61. YANG X P,ZHAO W Z,ZOU C N,et al. Origin of lowpermeability reservoir and distribution of favorable reservoir. Acta Petrolei Sinica,2007,28(4):57-61.
[3] 闫建平,梁强,耿斌,等.低渗透砂岩微孔特征与孔隙结构类型的关系——以东营凹陷南斜坡沙四段为例.岩性油气藏, 2017,29(3):18-26. YAN J P,LIANG Q,GENG B,et al. Relationship between micropore characteristics and pore structure of low permeability sandstone:a case of the fourth member of Shahejie Formation in southern slope of Dongying Sag. Lithologic Reservoirs,2017, 29(3):18-26.
[4] 李南星,刘林玉,郑锐,等.鄂尔多斯盆地镇泾地区超低渗透储层评价. 岩性油气藏,2011,23(2):41-45. LI N X,LIU L Y,ZHENG R,et al. Super-low permeability reservoir evaluation in Zhenjing area,Ordos Basin. Lithologic Reservoirs,2011,23(2):41-45.
[5] 王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力. 石油学报,2001,22(6):40-44. WANG W M,GUO H K,YE C H. The evaluation of development potential in low permeability oilfield by the aid of NMR movable fluid detecting technology. Acta Petrolei Sinica,2001, 22(6):40-44.
[6] 叶礼友,高树生,熊伟,等.可动水饱和度作为低渗砂岩气藏储层评价参数的论证.石油天然气学报,2011,33(1):57-59. YE L Y,GAO S S,XIONG W,et al. Demonstration of mobile water saturation as evaluation parameter of low permeability sandstone gas reservoir. Journal of Oil and Gas Technology, 2011,33(1):57-59.
[7] 李海波,郭和坤,杨正明,等.鄂尔多斯盆地陕北地区三叠系长7致密油赋存空间.石油勘探与开发,2015,42(3):396-400. LI H B,GUO H K,YANG Z M,et al. Tight oil occurrence space of Triassic Chang 7 member in northern Shaanxi area,Ordos Basin,NW China. Petroleum Exploration and Development, 2015,42(3):396-400.
[8] 李海波,郭和坤,周尚文,等.低渗透储层可动剩余油核磁共振分析.西南石油大学学报(自然科学版),2016,38(1):119-127. LI H B,GUO H K,ZHOU S W,et al. NMR analysis of movable remaining oil of low permeability reservoir. Journal of Southwest Petroleum University(Science & Technology Edition),2016, 38(1):119-127.
[9] 杨正明,骆雨田,何英,等.致密砂岩油藏流体赋存特征及有效动用研究.西南石油大学学报(自然科学版),2015,37(3):85-92. YANG Z M,LUO Y T,HE Y,et al. Study on occurrence feature of fluid and effective development in tight sandstone oil reservoir. Journal of Southwest Petroleum University(Science & Technology Edition),2015,37(3):85-92.
[10] 周尚文,刘洪林,闫刚,等.中国南方海相页岩储层可动流体及T2截止值核磁共振研究.石油与天然气地质,2016,37(4):612-616. ZHOU S W,LIU H L,YAN G,et al. NMR research of movable fluid and T2 cutoff of marine shale in South China. Oil & Gas Geology,2016,37(4):612-616.
[11] GAO H,LI H Z. Determination of movable fluid percentage and movable fluid porosity in ultra-low permeability sandstone using nuclear magnetic resonance(NMR)technique. Journal of Petroleum Science and Engineering,2015,133:258-267.
[12] 肖开华,冯动军,李秀鹏.川西新场须四段致密砂岩储层微观孔喉与可动流体变化特征.石油实验地质,2014,36(1):77-82. XIAO K H,FENG D J,LI X P. Micro pore and throat characteristics and movable fluid variation of tight sandstone in 4 th member of Xujiahe Formation,Xinchang Gas Field,western Sichuan Basin. Petroleum Geology & Experiment,2014,36(1):77-82.
[13] 杨秋莲,李爱琴,孙燕妮,等.超低渗储层分类方法探讨.岩性油气藏,2007,19(4):51-56.YANG Q L,LI A Q,SUN Y N,et al. Classification method for extra-low permeability reservoirs. Lithologic Reservoirs,2007, 19(4):51-56.
[14] 郑可,徐怀民,陈建文,等.低渗储层可动流体核磁共振研究. 现代地质,2013,27(3):710-718. ZHENG K,XU H M,CHEN J W,et al. Movable fluid study of low permeability reservoir with nuclear magnetic resonance technology. Geoscience,2013,27(3):710-718.
[15] 喻建,杨孝,李斌,等.致密油储层可动流体饱和度计算方法——以合水地区长7致密油储层为例. 石油实验地质,2014,36(6):767-772. YU J,YANG X,LI B,et al. A method of determining movable fluid saturation of tight oil reservoir:a case study of tight oil reservoirs in seventh member of Yanchang Formation in Heshui area. Petroleum Geology & Experiment,2014,36(6):767-772.
[16] 邵雨,杨勇强,万敏,等.吉木萨尔凹陷二叠系芦草沟组沉积特征及沉积相演化.新疆石油地质,2015,36(6):636. SHAO Y,YANG Y Q,WAN M,et al. Sedimentary characteristic and facies evolution of Permian Lucaogou Formation in Jimsar Sag,Junggar Basin. Xinjiang Petroleum Geology,2015,36(6):636.
[17] 郑民,李建忠,吴晓智,等.致密储集层原油充注物理模拟——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例.石油勘探与开发,2016,43(2):220. ZHENG M,LI J Z,WU X Z,et al. Physical modeling of oil charging in tight reservoirs:a case study of Permian Lucaogou Formation in Jimsar Sag,Junggar Basin,NW China. Petroleum Exploration and Development,2016,43(2):220.
[18] 王晓琦,孙亮,朱如凯,等.利用电子束荷电效应评价致密储集层储集空间——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例.石油勘探与开发,2015,42(4):472-480. WANG X Q,SUN L,ZHU R K,et al. Application of charging effects in evaluating storage space of tight reservoirs:a case study from Permian Lucaogou Formation in Jimusar sag,Junggar Basin,NW China. Petroleum Exploration and Development, 2015,42(4):472-480.
[19] 刘堂宴,王绍民,傅容珊,等.核磁共振谱的岩石孔喉结构分析.石油地球物理勘探,2003,38(3):328-333. LIU T Y,WANG S M,FU R S,et al. Analysis of rock pore structure with NMR spectra. Oil Geophysical Prospecting,2003, 38(3):328-333.
[20] 王秀娟,王明磊,赵爱彬.鄂尔多斯盆地延长组长7致密油储层微观特征.岩性油气藏,2014,26(3):79-83. WANG X J,WANG M L,ZHAO A B. Microscopic characteristics of Chang 7 tight sandstone reservoir in Ordos Basin. Lithologic Reservoirs,2014,26(3):79-83.
[21] 肖亮,肖忠祥.核磁共振测井T2 cutoff确定方法及适用性分析. 地球物理学进展,2008,23(1):167-172. XIAO L,XIAO Z X. Analysis of methods for determining NMR T2 cutoff and its applicability. Progress in Geophysics,2008,23(1):167-172.
[22] 师调调,孙卫,何生平.低渗透储层微观孔隙结构与可动流体饱和度关系研究.地质科技情报,2012,31(4):81-85. SHI T T,SUN W,HE S P. Relationship between micro-pore structure and movable fluid saturation in low permeability reservoir. Geological Science and Technology Information,2012,31(4):81-85.
[23] 雷启鸿,成良丙,王冲,等.鄂尔多斯盆地长7致密储层可动流体分布特征.天然气地球科学,2017,28(1):26-31. LEI Q H,CHENG L B,WANG C,et al. A study on distribution features of movable fluids for Chang 7 tight reservoir in Ordos Basin. Natural Gas Geoscience,2017,28(1):26-31.
[24] 赵会涛,王怀厂,刘健,等.鄂尔多斯盆地东部地区盒8段致密砂岩气低产原因分析.岩性油气藏,2014,26(5):75-79. ZHAO H T,WANG H C,LIU J,et al. Reasons of low yield of tight sandstone gas of He 8 member in eastern Ordos Basin. Lithologic Reservoirs,2014,26(5):75-79.
[25] 贾承造,邹才能,李建忠,等. 中国致密油评价标准、主要类型、基本特征及资源前景.石油学报,2012,33(3):343-350. JIA C Z,ZOU C N,LI J Z. et al. Assessment criteria,main type,basic feature and resource prospects of the tight oil in China. Acta Petrolei Sinica,2012,33(3):343-350.
[26] 陈猛.致密油储层水驱油实验及动态网络模拟研究.成都:西南石油大学,2017. CHEN M. Studies of water displacement experiments and dynamic network simulation in tight oil reservoirs. Chengdu:Southwest Petroleum University,2017.
[27] 李长政,孙卫,任大忠,等.华庆地区长81储层微观孔隙结构特征研究.岩性油气藏,2012,24(4):19-23. LI C Z,SUN W,REN D Z,et al. Microscopic pore structure characteristics of Chang 81 reservoir in Huaqing area. Lithologic Reservoirs,2012,24(4):19-23.
[28] 时建超,屈雪峰,雷启鸿,等.致密油储层可动流体分布特征及主控因素分析——以鄂尔多斯盆地长7储层为例.天然气地球科学,2016,27(5):827-834. SHI J C,QU X F,LEI Q H,et al. Distribution characteristics and controlling factors of movable fluid in tight oil reservoir in Ordos Basin:a case study of Chang 7 reservoir in Ordos Basin. Natural Gas Geoscience,2016,27(5):827-834.
[29] 王瑞飞,陈明强.特低渗透砂岩储层可动流体赋存特征及影响因素.石油学报,2008,29(4):558-561. WANG R F,CHEN M Q. Characteristics and influencing factors of movable fluid in ultra-low permeability sandstone reservoir. Acta Petrolei Sinica,2008,29(4):558-561.
[1] 黄向胜, 闫琢玉, 张东峰, 黄合庭, 罗程飞. 琼东南盆地Ⅱ号断裂带新生界多期热流体活动与天然气运聚特征[J]. 岩性油气藏, 2024, 36(5): 67-76.
[2] 李恒萱, 温志新, 宋成鹏, 刘祚冬, 季天愚, 沈一平, 耿珂. 塞内加尔盆地演化过程与岩性油气藏勘探前景[J]. 岩性油气藏, 2023, 35(6): 45-53.
[3] 王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明. 莺歌海盆地D13区新近系黄流组大型海底扇地震识别及含气性预测[J]. 岩性油气藏, 2022, 34(4): 42-52.
[4] 屈童, 高岗, 徐新德, 王瑞, 甘军, 梁刚, 游君君. 三角洲—浅海沉积体系泥质沉积规律模拟实验——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2022, 34(1): 24-33.
[5] 毛雪莲, 朱继田, 姚哲, 徐守立, 唐历山. 琼东南盆地深水区中央峡谷砂体成因与展布规律[J]. 岩性油气藏, 2017, 29(6): 60-68.
[6] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46-54.
[7] 武爱俊, 徐建永, 滕彬彬, 肖伶俐, 康波, 李凡异, 印斌浩. “动态物源”精细刻画方法与应用——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2017, 29(4): 55-63.
[8] 刘 畅,苏 龙,关宝文,郑有伟,常 江,郑建京 . 茂名油页岩生烃演化特征及热解动力学—— — 以琼东南盆地地质模型为例[J]. 岩性油气藏, 2014, 26(6): 89-97.
[9] 郑荣才,郑哲,高博禹,胡晓庆,王昌勇. 珠江口盆地白云凹陷珠江组海底扇深水重力流沉积特征[J]. 岩性油气藏, 2013, 25(2): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .