岩性油气藏 ›› 2018, Vol. 30 ›› Issue (4): 140–148.doi: 10.12108/yxyqc.20180417

• 石油工程 • 上一篇    下一篇

致密油藏体积压裂水平井参数优化研究

苏皓1,2, 雷征东2, 张荻萩3, 李俊超2, 鞠斌山1, 张泽人4   

  1. 1. 中国地质大学 (北京)能源学院, 北京 100083;
    2. 中国石油勘探开发研究院, 北京 100083;
    3. 中国石油经济技术研究院, 北京 100724;
    4. 中国石油集团东方地球物理勘探有限责任公司, 河北 涿州 072750
  • 收稿日期:2017-12-20 修回日期:2018-03-04 出版日期:2018-07-21 发布日期:2018-07-21
  • 作者简介:苏皓(1990-),男,中国地质大学(北京)在读博士研究生,研究方向为低渗透油田开发理论和方法。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)能源学院。Email:suhao0912@qq.com。
  • 基金资助:
    “十三五”国家重大科技专项“低渗、特低渗油藏水驱扩大波及体积方法与关键技术”(编号:2017ZX05013-002)资助

Volume fracturing parameters optimization of horizontal well in tight reservoir

SU Hao1,2, LEI Zhengdong2, ZHANG Diqiu3, LI Junchao2, JU Binshan1, ZHANG Zeren4   

  1. 1. School of Energy Resources, China University of Geosciences, Beijing 100083, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    3. PetroChina Research Institute of Economics & Technology, Beijing 100724, China;
    4. Bureau of Geophysical Prospecting, PetroChina, Zhuozhou 072750, China
  • Received:2017-12-20 Revised:2018-03-04 Online:2018-07-21 Published:2018-07-21

摘要: “水平井+体积压裂”技术是获取致密性储层中工业油流的重要手段。为了对影响体积压裂水平井开发效果的参数进行优化设计,基于离散裂缝模型的数值模拟方法,采用更为灵活的非结构化网格,建立了体积压裂水平井模拟模型,经Eclipse软件及矿场实际井资料验证该模型可靠性较高,可准确地表征复杂裂缝的几何参数和描述流体在裂缝中的流动。利用长庆油田某致密油藏实际参数,对水平井方位、布缝方式、段间距、簇间距、改造体积等参数进行了优化设计,结果表明:当水平井方位与天然裂缝平行时,开发效果最好;根据累计产量的大小,哑铃型布缝方式优于交错型、均匀型、纺锤型布缝方式;段间距应大于相邻2段的泄油半径之和,避免段间干扰;簇间距应尽可能大,但要小于天然裂缝平均缝长;当改造体积一定时,细长形状的改造区域比短粗形状的改造区域开发效果更好,当工艺上难以增加压裂裂缝长度时,可通过增加段内簇数改善开发效果,簇数越多,初期累计产量越高,但最优簇数取决于开采时间的长短。研究结果可为致密油藏体积压裂水平井造缝设计提供依据。

关键词: 径向井压裂, 蒸汽吞吐, 产能, 裂缝形态

Abstract: The technique combining horizontal well with volume fracturing is an important way to obtain commercial oil flow in tight reservoir. In order to optimize the volume fracturing parameters of horizontal well which influence its development effects,based on the numerical simulation method of discrete fracture model,the more flexible unstructured grid was used to establish simulation models of volume fracturing for horizontal well, which can explicitly characterize the geometric parameters of complex fractures and the flows inside,verified by the Eclipse software and the actual mine well data. By referring to the parameters of tight reservoir in Changqing Oilfield,the parameters of the horizontal well such as orientation,fracture arrangement,stage spacing,cluster spacing and SRV were optimized. The results show that the development effect is best when the orientation of horizontal well is parallel to the orientation of natural fractures. The optimal sorting of fracture arrangement type is dumbbell-type,staggered-type,uniform-type and spindle-type. The stage spacing should be longer than sum of drainage radius of both two adjacent stages,so as to eliminate the interference among the stages. The cluster spacing should be as long as possible without excess the average length of natural fractures. When SRV is constant,the longer the length of stimulated areas,the better the development effect will be. When the length of the stimulated fracture is difficult to increase restricted by technology,increasing the number of cluster could improve the well productivity as well,and the more clusters there are,the highest of initial cumulative production can be expected,nevertheless,the optimal cluster number depends on well planned production time. The research results can provide a basis for the design of fractured horizontal wells in tight reservoirs.

Key words: radial well fracturing, steam soak, deliverability, fracture morphology

中图分类号: 

  • TE319
[1] 赵政璋, 杜金虎, 邹才能, 等.致密油气.北京:石油工业出版社, 2012:1-42. ZHAO Z Z, DU J H, ZOU C N, et al. Tight oil and gas. Beijing:Petroleum Industry Press, 2012:1-42.
[2] 杨华, 李士祥, 刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力.石油学报, 2013, 34(1):1-11. YANG H, LI S X, LIU X Y. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin. Acta Petrolei Sinica, 2013, 34(1):1-11.
[3] 邱振, 李建忠, 吴晓智, 等.国内外致密油勘探现状、主要地质特征及差异.岩性油气藏, 2015, 27(4):119-126. QIU Z, LI J Z, WU X Z, et al. Exploration status, main geologic characteristics and their differences of tight oil between America and China. Lithologic Reservoirs, 2015, 27(4):119-126.
[4] 付金华, 喻建, 徐黎明, 等.鄂尔多斯盆地致密油勘探开发新进展及规模富集可开发主控因素.中国石油勘探, 2015, 20(5):9-19. FU J H, YU J, XU L M, et al. New progress in exploration and development of tight oil in Ordos Basin and main controlling factors of large-scale enrichment and exploitable capacity. China Petroleum Exploration, 2015, 20(5):9-19.
[5] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景.石油学报, 2012, 33(3):343-350. JIA C Z, ZOU C N, LI J Z, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Petrolei Sinica, 2012, 33(3):343-350.
[6] 王秀娟, 王明磊, 赵爱彬. 鄂尔多斯盆地延长组长7致密油储层微观特征.岩性油气藏, 2014, 26(3):79-83. WANG X J, WANG M L, ZHAO A B. Microscopic characteristics of Chang 7 tight sandstone reservoir in Ordos Basin. Lithologic Reservoirs, 2014, 26(3):79-83.
[7] 李卫成, 叶博, 张艳梅, 等.致密油水平井体积压裂攻关试验区单井产量主控因素分析. 石油地质与工程, 2016, 30(6):111-114. LI W C, YE B, ZHANG Y M, et al. The main control factors of single well productivity for the experiment block using horizontal well by volume fracturing in tight oil reservoir. Petroleum Geology and Engineering, 2016, 30(6):111-114.
[8] 樊建明, 杨子清, 李卫兵, 等.鄂尔多斯盆地长7致密油水平井体积压裂开发效果评价及认识. 中国石油大学学报(自然科学版), 2015, 39(4):103-110. FAN J M, YANG Z Q, LI W B, et al. Assessment of fracturing treatment of horizontal wells using SRV technique for Chang-7 tight oil reservoir in Ordos Basin. Journal of China University of Petroleum(Edition of Natural Science), 2015, 39(4):103-110.
[9] 韩婧婧, 刘建, 武龙. 鄂尔多斯盆地长6致密砂岩油藏压裂技术研究. 岩性油气藏, 2017, 29(1):130-134. HAN J J, LIU J, WU L. Investigation on fracturing technology of Chang 6 tight sandstone reservoir in Ordos Basin. Lithologic Reservoirs, 2017, 29(1):130-134.
[10] 张娅妮, 马新仿. 页岩气体积压裂数值模拟研究.天然气与石油, 2015, 33(1):54-58. ZHANG Y N, MA X F. Numerical simulation study on shale gas volume fracturing. Natural Gas and Oil, 2015, 33(1):54-58.
[11] 孟展, 杨胜来, 王璐, 等.合水长6致密油体积压裂水平井产能影响因素分析.非常规油气, 2016, 3(5):127-133. MENG Z, YANG S L, WANG L, et al. Analysis of influence factors on horizontal well productivity by volume fracturing in Heshui Chang 6 tight oil reservoir. Unconventional Oil and Gas, 2016, 3(5):127-133.
[12] 潘有军, 荆文波, 徐赢, 等.火山岩油藏水平井体积压裂产能预测研究.岩性油气藏, 2018, 30(3):159-164. PAN Y J, JING W B, XU Y, et al. Productivity prediction of horizontal wells by volume fracturing in volcanic reservoirs. Lithologic Reservoirs, 2018, 30(3):159-164.
[13] 孙兵, 刘立峰, 丁江辉. 致密油水平井产能主控地质因素研究.特种油气藏, 2017, 24(2):115-119. SUN B, LIU L F, DING J H. Study of the main geological control factors on horizontal well productivity in tight oil reservoir. Special Oil and Gas Reservoirs, 2017, 24(2):115-119.
[14] 闵春佳, 卢双舫, 唐明明, 等.致密油储层水平井压裂参数优化模拟.断块油气田, 2015, 22(6):794-797. MIN C J, LU S F, TANG M M, et al. Hydro-fracturing parameter optimization and simulation of horizontal well in tight oil reservoir. Fault-Block Oil and Gas Field, 2015, 22(6):794-797.
[15] 胡嘉, 姚猛.页岩气水平井多段压裂产能影响因素数值模拟研究.石油化工应用, 2013, 32(5):34-39. HU J, YAO M. Multiple fracturing of horizontal well in shale gas productivity factors numerical simulation researching. Petrochemical Industry Application, 2013, 32(5):34-39.
[16] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs. SPE Journal, 1963, 3(3):245-255.
[17] KARIMI-FARD M, FIROOZABADI A. Numerical simulation of water injection in fractured media using the discrete-fracture model and the Galerkin method. SPE Reservoir Evaluation & Engineering, 2003, 6(2):117-126.
[18] ZHANG Y B, GONG B, LI J C, et al. Discrete fracture modeling of 3 D heterogeneous enhanced coalbed methane recovery with prismatic meshing. Energies, 2015, 8(6):6153-6176.
[19] 彭晖, 刘玉章, 冉启全, 等.致密油储层水平井产能影响因素研究. 天然气地球科学, 2014, 25(5):771-777. PENG H, LIU Y Z, RAN Q Q, et al. Study on the horizontal well production in tight oil reservoirs. Natural Gas Geoscience, 2014, 25(5):771-777.
[20] KARIMI-FARD M, DURLOFSKY L J, AZIZ K. An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE 88812, 2004.
[21] PEACEMAN D W. Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability. SPE Journal, 1983, 23(3):531-543.
[22] YU W, LUO Z, JAVADPOUR F, et al. Sensitivity analysis of hydraulic fracture geometry in shale gas reservoirs. Journal of Petroleum Science and Engineering, 2014, 113(1):1-7.
[23] 刘建伟, 张佩玉, 廖天彬, 等.马58 H致密油藏水平井分段多簇射孔压裂技术.石油钻采工艺, 2015, 37(3):88-92. LIU J W, ZHANG P Y, LIAO T B, et al. Staged multi-cluster perforation fracturing technology for horizontal well Ma-58 H in tight reservoir. Oil Drilling and Production Technology, 2015, 37(3):88-92.
[24] 刘卫东, 张国栋, 白志峰, 等.致密油藏水平井多级压裂储层改造体积评价.新疆石油地质, 2015, 36(2):199-203. LIU W D, ZHANG G D, BAI Z F, et al. Evaluation of stimulated reservoir volume(SRV) in tight oil reservoirs by horizontal well multistage fracturing process. Xinjiang Petroleum Geology, 2015, 36(2):199-203.
[25] 蒋廷学, 王海涛, 卞晓冰, 等.水平井体积压裂技术研究与应用.岩性油气藏, 2018, 30(3):1-11. JIANG T X, WANG H T, BIAN X B, et al. Volume fracturing technology for horizontal well and its application. Lithologic Reservoirs, 2018, 30(3):1-11.
[1] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
[2] 宋宣毅, 刘月田, 马晶, 王俊强, 孔祥明, 任兴南. 基于灰狼算法优化的支持向量机产能预测[J]. 岩性油气藏, 2020, 32(2): 134-140.
[3] 卞晓冰, 侯磊, 蒋廷学, 高东伟, 张驰. 深层页岩裂缝形态影响因素[J]. 岩性油气藏, 2019, 31(6): 161-168.
[4] 苏朋辉, 夏朝辉, 刘玲莉, 段利江, 王建俊, 肖文杰. 澳大利亚M区块低煤阶煤层气井产能主控因素及合理开发方式[J]. 岩性油气藏, 2019, 31(5): 121-128.
[5] 姬靖皓, 席家辉, 曾凤凰, 杨啟桂. 致密油藏分段多簇压裂水平井非稳态产能模型[J]. 岩性油气藏, 2019, 31(4): 157-164.
[6] 李传亮, 朱苏阳, 柴改建, 董凤玲. 直井与水平井的产能对比[J]. 岩性油气藏, 2018, 30(N): 12-16.
[7] 徐波, 王建, 于乐丹, 王凯泽, 董凤娟, 刘峰. 致密油储层成岩相类型及其对产能的影响——以鄂尔多斯盆地姜家川地区长8储层为例[J]. 岩性油气藏, 2018, 30(6): 109-116.
[8] 潘有军, 荆文波, 徐赢, 赵嗣君, 李继成, 陶登海. 火山岩油藏水平井体积压裂产能预测研究[J]. 岩性油气藏, 2018, 30(3): 159-164.
[9] 李小龙, 许华儒, 刘晓强, 王涛, 张凯文, 曲占庆. 径向井压裂裂缝形态及热采产能研究[J]. 岩性油气藏, 2017, 29(6): 154-160.
[10] 黄全华, 童凯, 陈冲, 陆云, 付云辉. 厚层气藏气井拟稳态产能研究[J]. 岩性油气藏, 2017, 29(6): 148-153.
[11] 陈明强, 王宁, 张阳, 任龙. 渭北油田浅层油藏产能预测方法[J]. 岩性油气藏, 2017, 29(5): 134-139.
[12] 何吉祥, 姜瑞忠, 毛瑜, 袁淋. 致密气藏气水两相压裂水平井产能计算方法[J]. 岩性油气藏, 2017, 29(4): 154-161.
[13] 严向阳, 王腾飞, 何双喜, 申贝贝, 徐永辉, 陈林. 过量顶替液作业下压裂水平气井的产能模拟[J]. 岩性油气藏, 2017, 29(1): 140-146.
[14] 袁 淋,王朝明,李晓平,胡新佳,曾 力. 致密砂岩气藏气水同产水平井产能公式推导及应用[J]. 岩性油气藏, 2016, 28(3): 121-126.
[15] 袁 淋, 李晓平, 李松岑 . 低渗水驱油藏水平井见水后产能研究新方法[J]. 岩性油气藏, 2015, 27(3): 127-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .