岩性油气藏 ›› 2018, Vol. 30 ›› Issue (N): 12–16.doi: 10.12108/yxyqc.20180302

• 论坛与综述 •    

直井与水平井的产能对比

李传亮1, 朱苏阳1, 柴改建2, 董凤玲3   

  1. 1. 西南石油大学 石油与天然气工程学院, 成都 610599;
    2. 斯伦贝谢长和油田工程有限公司, 西安 710021;
    3. 中国石化中原油田分公司 采油二厂, 河南 范县 457532
  • 收稿日期:2017-12-05 修回日期:2018-01-07 出版日期:2018-05-21
  • 作者简介:李传亮(1962-),男,博士,教授,主要从事油藏工程方面的教学与科研工作。地址:(610599)四川省成都市新都区西南石油大学石油与天然气工程学院。Email:cllipe@qq.com。
  • 基金资助:
    国家重大科技专项“大庆长垣特高含水油田提高采收率示范工程”(编号:2016ZX05054)资助

Comparison of productivity of vertical wells with horizontal wells

LI Chuanliang1, ZHU Suyang1, CHAI Gaijian2, DONG Fengling3   

  1. 1. College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610599, China;
    2. SCP Oilfield Service Co., Ltd., Xi'an 710021, China;
    3. No.2 Oil Production Plant, Zhongyuan Oilfield Company, Sinopec, Fanxian 457532, Henan, China
  • Received:2017-12-05 Revised:2018-01-07 Online:2018-05-21

摘要: 油藏开采可以选用直井,也可以选用水平井,可以对油井进行压裂,也可以不进行压裂。矿场上选用何种增产措施,除了要考虑成本之外,还要考虑措施的增产效果。分油井压裂与不压裂2种情形,对比了直井与水平井的产能,同时通过计算示例分析了泄油面积、储集层厚度、压裂裂缝条数、储集层渗透率和原油黏度对增产效果的影响。研究表明:普通水平井的增产效果不如压裂直井;厚油层适合采用直井开发,薄油层适合采用水平井开发;增大泄油面积不能有效提高油井产能,但能延长稳产期;增加压裂裂缝条数能显著提高水平井产能,体积压裂及多级压裂均是水平井的有效增产途径;未压裂水平井的增产效果十分有限;中高渗透油藏可以采用任意油井开发,而低渗透油藏则必须采用压裂水平井开发;中低黏度油藏可以采用任意油井开发,而高黏度油藏或稠油油藏则必须借助于热力采油。研究结果可为矿场上选择油井类型及增产措施提供参考。

Abstract: Exploitation of reservoirs can use either vertical wells or horizontal wells. Wells can be either fractured or unfractured. In well stimulation selection of field practice,the stimulation proficiency is usually taken into account at first besides of stimulation cost. The stimulation proficiencies of vertical wells and horizontal wells were studied under two circumstances of wells being fractured and not fractured. The effects of pay thickness,drainage area,fracture number,rock permeability and fluid viscosity to stimulation proficiency were also studied separately. The study shows that the stimulation proficiency of unfractured horizontal wells is not so good as vertical fractured wells. The thick oil layer is suitable for being exploited by vertical wells,while the thin oil layer is more suitable for using horizontal wells than vertical wells. The larger drainage area of wells cannot increase their stimulation proficiency largely,and can prolong the production time of wells. The fracture number of wells can increase their stimulation proficiency very effectively. The volumetric fracturing or multi-stage fracturing is the most effective stimulation method of horizontal wells. Horizontal wells cannot demonstrate higher stimulation proficiency without fracturing. The middle and high permeability reservoirs can take any types of well for exploitation,but the low permeability reservoirs must use fractured horizontal wells. The middle and low viscosity oil reservoirs can take any types of well for exploitation,but the high viscosity or heavy oil reservoirs must be developed by the aid of thermal recovery method.

中图分类号: 

  • TE34
[1] 秦同洛, 李璗, 陈元千. 实用油藏工程方法. 北京:石油工业出版社, 1989:176-241. QIN T L, LI D, CHEN Y Q. Practical reservoir engineering. Beijing:Petroleum Industry Press, 1989:176-241.
[2] 李传亮, 孔祥言. 确定采油指数和地层压力的方法研究. 西南石油大学学报(自然科学版), 2000, 22(2):40-42. LI C L, KONG X Y. Study on the determination of productivity index and formation prssure of oil wells. Journal of Southwest Petroleum University(Science & Technology Edition), 2000, 22(2):40-42.
[3] 阴艳芳. 水平井技术在薄层低渗透油藏开发中的应用. 石油地质与工程, 2007, 21(6):50-52. YIN Y F. Application of horizontal well technology in low permeability reservoir with thin layers. Petroleum Geology and Engineering, 2007, 21(6):50-52.
[4] 于天忠, 张建国, 叶双江, 等. 辽河油田曙一区杜84块超稠油油藏水平井热采开发技术研究. 岩性油气藏, 2011, 23(6):114-119. YU T Z, ZHANG J G, YE S J, et al. Development technology with thermal recovery for horizontal well of superheavyoil reservoir in Du 84 block in Shu 1 area, Liaohe Oilfield. Lithologic Reservoirs, 2011, 23(6):114-119.
[5] 王飞宇. 提高热采水平井动用程度的方法与应用. 岩性油气藏, 2010, 22(增刊1):100-103. WANG F Y. Method to improve producing degree of thermal recovery horizontal wells and its application. Lithologic Reservoirs, 2010, 22(Suppl 1):100-103.
[6] 邓学峰. 致密低渗油藏压裂水平井合理生产压差优化设计. 岩性油气藏, 2017, 29(1):135-139. DENG X F. Optimization of reasonable production pressure difference of fractured horizontal well in low permeability tight reservoirs. Lithologic Reservoirs, 2017, 29(1):135-139.
[7] 刘建坤, 蒋廷学, 万有余, 等. 致密砂岩薄层压裂工艺技术研究及应用. 岩性油气藏, 2018, 30(1):165-172. LIU J K, JIANG T X, WAN Y Y, et al. Fracturing technology for thin layer in tight sandstone reservoir and its application. Lithologic Reservoirs, 2018, 30(1):165-172.
[8] 何吉祥, 姜瑞忠, 毛瑜, 等. 致密气藏气水两相压裂水平井产能计算方法. 岩性油气藏, 2017, 29(4):154-161. HE J X, JIANG R Z, MAO Y, et al. Productivity calculation method for gas-water two phase fractured horizontal wells in tight gas reservoir. Lithologic Reservoirs, 2017, 29(4):154-161.
[9] 李传亮. 油藏工程原理.3版. 北京:石油工业出版社, 2017:191-213. LI C L. Fundamentals of reservoir engineering. 3th ed. Beijing:Petroleum Industry Press, 2017:191-213.
[10] 李传亮, 林兴, 朱苏阳.长水平井的产能公式. 新疆石油地质, 2014, 35(3):361-364. LI C L, LIN X, ZHU S Y. A production rate equation for long horizontal wells. Xinjiang Petroleum Geology, 2014, 35(3):361-364.
[11] 曾焱, 王本成, 聂仁仕.线性复合油藏多级压裂水平井渗流模型. 石油学报, 2017, 38(6):687-695. ZENG Y, WANG B C, NIE R S. A production rate equation for long horizontal wells. Acta Petrolei Sinica, 2017, 38(6):687-695.
[12] 李传亮, 朱苏阳. 水平井的表皮因子. 岩性油气藏, 2014, 26(4):16-21. LI C L, ZHU S Y. Skin factor of horizontal wells. Lithologic Reservoirs, 2014, 26(4):16-21.
[13] 李小龙, 许华儒, 刘晓强, 等. 径向井压裂裂缝形态及热采产能研究. 岩性油气藏, 2017, 29(6):154-160. LI X L, XU H R, LIU X Q, et al. Fracture morphology and production performance of radial well fracturing. Lithologic Reservoirs, 2017, 29(6):154-160.
[1] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
[2] 杨美华, 钟海全, 李颖川. 缝洞型碳酸盐岩油藏新型油藏生产指示曲线[J]. 岩性油气藏, 2021, 33(2): 163-170.
[3] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[4] 张运来, 陈建波, 周海燕, 张吉磊, 章威. 海上底水油藏水平井水驱波及系数定量表征[J]. 岩性油气藏, 2020, 32(6): 146-153.
[5] 曹旭升, 韩昀, 张继卓, 罗志伟. 渗吸效应对裂缝性低渗砾岩油藏开发的影响——以玛湖乌尔禾组储层为例[J]. 岩性油气藏, 2020, 32(4): 155-162.
[6] 崔永正, 姜瑞忠, 郜益华, 乔欣, 王琼. 空间变导流能力压裂井CO2驱试井分析[J]. 岩性油气藏, 2020, 32(4): 172-180.
[7] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[8] 冯炜, 杨晨, 陶善浔, 王财忠, 陆彦颖, 张路锋, 周福建. 碳酸盐岩酸蚀裂缝表面形态特征的实验研究[J]. 岩性油气藏, 2020, 32(3): 166-172.
[9] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[10] 邓成刚, 李江涛, 柴小颖, 陈汾君, 杨喜彦, 王海成, 连运晓, 涂加沙. 涩北气田弱水驱气藏水侵早期识别方法[J]. 岩性油气藏, 2020, 32(1): 128-134.
[11] 宋明明, 韩淑乔, 董云鹏, 陈江, 万涛. 致密砂岩储层微观水驱油效率及其主控因素[J]. 岩性油气藏, 2020, 32(1): 135-143.
[12] 任文博. 流势调控在缝洞型碳酸盐岩油藏控水稳油中的应用[J]. 岩性油气藏, 2019, 31(6): 127-134.
[13] 姜瑞忠, 张春光, 郜益华, 耿艳宏, 余辉, 李昊远. 缝洞型碳酸盐岩油藏水平井分形非线性渗流[J]. 岩性油气藏, 2019, 31(6): 118-126.
[14] 孙亮, 李勇, 杨菁, 李保柱. 薄层底水碳酸盐岩油藏水平井含水上升模式及优化注水技术[J]. 岩性油气藏, 2019, 31(6): 135-144.
[15] 张志刚, 刘春杨, 刘国志. 低渗透油田储层连通关系动静态综合评价方法[J]. 岩性油气藏, 2019, 31(5): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!