岩性油气藏 ›› 2018, Vol. 30 ›› Issue (N): 12–16.doi: 10.12108/yxyqc.20180302

• 论坛与综述 •    

直井与水平井的产能对比

李传亮1, 朱苏阳1, 柴改建2, 董凤玲3   

  1. 1. 西南石油大学 石油与天然气工程学院, 成都 610599;
    2. 斯伦贝谢长和油田工程有限公司, 西安 710021;
    3. 中国石化中原油田分公司 采油二厂, 河南 范县 457532
  • 收稿日期:2017-12-05 修回日期:2018-01-07 出版日期:2018-05-21
  • 第一作者:李传亮(1962-),男,博士,教授,主要从事油藏工程方面的教学与科研工作。地址:(610599)四川省成都市新都区西南石油大学石油与天然气工程学院。Email:cllipe@qq.com。
  • 基金资助:
    国家重大科技专项“大庆长垣特高含水油田提高采收率示范工程”(编号:2016ZX05054)资助

Comparison of productivity of vertical wells with horizontal wells

LI Chuanliang1, ZHU Suyang1, CHAI Gaijian2, DONG Fengling3   

  1. 1. College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610599, China;
    2. SCP Oilfield Service Co., Ltd., Xi'an 710021, China;
    3. No.2 Oil Production Plant, Zhongyuan Oilfield Company, Sinopec, Fanxian 457532, Henan, China
  • Received:2017-12-05 Revised:2018-01-07 Online:2018-05-21

摘要: 油藏开采可以选用直井,也可以选用水平井,可以对油井进行压裂,也可以不进行压裂。矿场上选用何种增产措施,除了要考虑成本之外,还要考虑措施的增产效果。分油井压裂与不压裂2种情形,对比了直井与水平井的产能,同时通过计算示例分析了泄油面积、储集层厚度、压裂裂缝条数、储集层渗透率和原油黏度对增产效果的影响。研究表明:普通水平井的增产效果不如压裂直井;厚油层适合采用直井开发,薄油层适合采用水平井开发;增大泄油面积不能有效提高油井产能,但能延长稳产期;增加压裂裂缝条数能显著提高水平井产能,体积压裂及多级压裂均是水平井的有效增产途径;未压裂水平井的增产效果十分有限;中高渗透油藏可以采用任意油井开发,而低渗透油藏则必须采用压裂水平井开发;中低黏度油藏可以采用任意油井开发,而高黏度油藏或稠油油藏则必须借助于热力采油。研究结果可为矿场上选择油井类型及增产措施提供参考。

Abstract: Exploitation of reservoirs can use either vertical wells or horizontal wells. Wells can be either fractured or unfractured. In well stimulation selection of field practice,the stimulation proficiency is usually taken into account at first besides of stimulation cost. The stimulation proficiencies of vertical wells and horizontal wells were studied under two circumstances of wells being fractured and not fractured. The effects of pay thickness,drainage area,fracture number,rock permeability and fluid viscosity to stimulation proficiency were also studied separately. The study shows that the stimulation proficiency of unfractured horizontal wells is not so good as vertical fractured wells. The thick oil layer is suitable for being exploited by vertical wells,while the thin oil layer is more suitable for using horizontal wells than vertical wells. The larger drainage area of wells cannot increase their stimulation proficiency largely,and can prolong the production time of wells. The fracture number of wells can increase their stimulation proficiency very effectively. The volumetric fracturing or multi-stage fracturing is the most effective stimulation method of horizontal wells. Horizontal wells cannot demonstrate higher stimulation proficiency without fracturing. The middle and high permeability reservoirs can take any types of well for exploitation,but the low permeability reservoirs must use fractured horizontal wells. The middle and low viscosity oil reservoirs can take any types of well for exploitation,but the high viscosity or heavy oil reservoirs must be developed by the aid of thermal recovery method.

中图分类号: 

  • TE34
[1] 秦同洛, 李璗, 陈元千. 实用油藏工程方法. 北京:石油工业出版社, 1989:176-241. QIN T L, LI D, CHEN Y Q. Practical reservoir engineering. Beijing:Petroleum Industry Press, 1989:176-241.
[2] 李传亮, 孔祥言. 确定采油指数和地层压力的方法研究. 西南石油大学学报(自然科学版), 2000, 22(2):40-42. LI C L, KONG X Y. Study on the determination of productivity index and formation prssure of oil wells. Journal of Southwest Petroleum University(Science & Technology Edition), 2000, 22(2):40-42.
[3] 阴艳芳. 水平井技术在薄层低渗透油藏开发中的应用. 石油地质与工程, 2007, 21(6):50-52. YIN Y F. Application of horizontal well technology in low permeability reservoir with thin layers. Petroleum Geology and Engineering, 2007, 21(6):50-52.
[4] 于天忠, 张建国, 叶双江, 等. 辽河油田曙一区杜84块超稠油油藏水平井热采开发技术研究. 岩性油气藏, 2011, 23(6):114-119. YU T Z, ZHANG J G, YE S J, et al. Development technology with thermal recovery for horizontal well of superheavyoil reservoir in Du 84 block in Shu 1 area, Liaohe Oilfield. Lithologic Reservoirs, 2011, 23(6):114-119.
[5] 王飞宇. 提高热采水平井动用程度的方法与应用. 岩性油气藏, 2010, 22(增刊1):100-103. WANG F Y. Method to improve producing degree of thermal recovery horizontal wells and its application. Lithologic Reservoirs, 2010, 22(Suppl 1):100-103.
[6] 邓学峰. 致密低渗油藏压裂水平井合理生产压差优化设计. 岩性油气藏, 2017, 29(1):135-139. DENG X F. Optimization of reasonable production pressure difference of fractured horizontal well in low permeability tight reservoirs. Lithologic Reservoirs, 2017, 29(1):135-139.
[7] 刘建坤, 蒋廷学, 万有余, 等. 致密砂岩薄层压裂工艺技术研究及应用. 岩性油气藏, 2018, 30(1):165-172. LIU J K, JIANG T X, WAN Y Y, et al. Fracturing technology for thin layer in tight sandstone reservoir and its application. Lithologic Reservoirs, 2018, 30(1):165-172.
[8] 何吉祥, 姜瑞忠, 毛瑜, 等. 致密气藏气水两相压裂水平井产能计算方法. 岩性油气藏, 2017, 29(4):154-161. HE J X, JIANG R Z, MAO Y, et al. Productivity calculation method for gas-water two phase fractured horizontal wells in tight gas reservoir. Lithologic Reservoirs, 2017, 29(4):154-161.
[9] 李传亮. 油藏工程原理.3版. 北京:石油工业出版社, 2017:191-213. LI C L. Fundamentals of reservoir engineering. 3th ed. Beijing:Petroleum Industry Press, 2017:191-213.
[10] 李传亮, 林兴, 朱苏阳.长水平井的产能公式. 新疆石油地质, 2014, 35(3):361-364. LI C L, LIN X, ZHU S Y. A production rate equation for long horizontal wells. Xinjiang Petroleum Geology, 2014, 35(3):361-364.
[11] 曾焱, 王本成, 聂仁仕.线性复合油藏多级压裂水平井渗流模型. 石油学报, 2017, 38(6):687-695. ZENG Y, WANG B C, NIE R S. A production rate equation for long horizontal wells. Acta Petrolei Sinica, 2017, 38(6):687-695.
[12] 李传亮, 朱苏阳. 水平井的表皮因子. 岩性油气藏, 2014, 26(4):16-21. LI C L, ZHU S Y. Skin factor of horizontal wells. Lithologic Reservoirs, 2014, 26(4):16-21.
[13] 李小龙, 许华儒, 刘晓强, 等. 径向井压裂裂缝形态及热采产能研究. 岩性油气藏, 2017, 29(6):154-160. LI X L, XU H R, LIU X Q, et al. Fracture morphology and production performance of radial well fracturing. Lithologic Reservoirs, 2017, 29(6):154-160.
[1] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[2] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[3] 杨兆臣, 卢迎波, 杨果, 黄纯, 弋大琳, 贾嵩, 吴永彬, 王桂庆. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184.
[4] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[5] 赵长虹, 孙新革, 卢迎波, 王丽, 胡鹏程, 邢向荣, 王桂庆. 薄层超稠油驱泄复合开发蒸汽腔演变物理模拟实验[J]. 岩性油气藏, 2023, 35(5): 161-168.
[6] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[7] 丁超, 王攀, 秦亚东, 梁向进, 郑爱萍, 李宁, 邢向荣. 基于非稳态热传导的SAGD开发指标预测模型[J]. 岩性油气藏, 2023, 35(1): 160-168.
[8] 马奎前, 刘东, 黄琴. 渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J]. 岩性油气藏, 2022, 34(5): 152-161.
[9] 孟智强, 葛丽珍, 祝晓林, 王永平, 朱志强. 气顶边水油藏气/水驱产油量贡献评价方法[J]. 岩性油气藏, 2022, 34(5): 162-170.
[10] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[11] 李甜, 代宗仰, 李阳, 黄蕾, 宫振超, 赵晓阳, 周晓龙, 黄澜. 辽河西部凹陷雷家地区古近系沙四段湖相白云岩成因[J]. 岩性油气藏, 2022, 34(2): 75-85.
[12] 李冬梅, 李会会, 朱苏阳, 李涛. 断溶体油气藏流动物质平衡方法[J]. 岩性油气藏, 2022, 34(1): 154-162.
[13] 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171.
[14] 毛志强, 张雯, 吴春洲, 陈立峰, 陈亚东, 李岗, 曾慧勇, 刘靓. 纵向双层缝洞油藏橡胶颗粒调流适应性[J]. 岩性油气藏, 2021, 33(5): 172-180.
[15] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!