岩性油气藏 ›› 2023, Vol. 35 ›› Issue (1): 160–168.doi: 10.12108/yxyqc.20230114

• 石油工程与油气田开发 • 上一篇    

基于非稳态热传导的SAGD开发指标预测模型

丁超1, 王攀1, 秦亚东2, 梁向进1, 郑爱萍1, 李宁1, 邢向荣1   

  1. 1. 中国石油新疆油田分公司, 新疆 克拉玛依 834000;
    2. 阿尔伯塔大学 石油工程学院, 埃德蒙顿 T6 G1 H9
  • 收稿日期:2022-04-11 修回日期:2022-06-08 发布日期:2023-01-06
  • 通讯作者: 王攀(1987-),男,高级工程师,主要从事稠油SAGD开发技术方面的研究工作。Email:zy-wp@petrochina.com.cn。 E-mail:zy-wp@petrochina.com.cn
  • 作者简介:丁超(1982-),男,硕士,高级工程师,主要从事油田勘探开发技术方面的研究工作。地址:(834000)新疆克拉玛依市宝石路278号科研生产办公楼A座。Email:ptrdc@petrochina.com.cn
  • 基金资助:
    国家油气重大科技专项“稠油/超稠油开发关键技术”(编号: 2016ZX05012)与中国石油天然气股份有限公司科技项目“稠油/超稠油开采关键技术”(编号: 2019B-14)联合资助

SAGD production performance prediction model based on unsteady heat transfer

DING Chao1, WANG Pan1, QIN Yadong2, LIANG Xiangjin1, ZHENG Aiping1, LI Ning1, XING Xiangrong1   

  1. 1. PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    2. Faculty of Petroleum Engineering, University of Alberta, Edmonton T6 G1 H9, Canada
  • Received:2022-04-11 Revised:2022-06-08 Published:2023-01-06

摘要: 根据传热学和热采理论,利用程序设计的方法,对考虑边界效应的SAGD(蒸汽辅助重力泄油)非稳态热传导模型和开发关键指标解析解及开发指标的快速预测进行了研究。研究结果表明:①现有的非稳态热传导模型对传热外边界的温度假设存在局限性,根据能量守恒原理修正传热外边界条件,建立传热深度与累积传热量的解析关系,可定量计算上覆和下伏地层的热损失;②在巴特勒经典SAGD产量模型基础上,推导的蒸汽腔上升及横向扩展阶段和下压阶段的产水量、油汽比和蒸汽热利用率等解析模型,可实现SAGD特定开发阶段或全生命周期开发关键指标的快速预测;③通过与实际指标对比,井组生产6.4a预测油汽比和含水率的符合率均在95%以上,证实了解析模型和程序设计的可靠性;④根据准噶尔盆地风城油田重32井区油藏参数,预测分析的不同油层厚度条件下SAGD蒸汽热利用率和关键开发指标表明,蒸汽热利用率大于35%、油汽比大于0.15对应油层厚度应大于12m。

关键词: 非稳态传热, SAGD, 热损失, 蒸汽热利用率, 油汽比, 重32井区, 风城油田, 准噶尔盆地

Abstract: According to the theories of heat transfer and thermal recovery,the SAGD (steam-assisted gravity drainage) unsteady heat transfer model and the analytical solutions of key development indexes were derived, which were taken into account for boundary effect. The rapid prediction of development indexes was realized by using the program design method. The results show that: (1) The existing unsteady heat transfer models have limitations on the temperature assumption of the outer boundary of heat transfer. According to the principle of energy conservation,the outer boundary condition of heat transfer was modified,and the analytical relationship between the heat transfer depth and the accumulated heat transfer was established,which can be used to quantitatively calculate the heat loss of the overburden and underburden. (2) On the basis of Butler’s classical SAGD production model,the analytical models of water production,oil-steam ratio and steam heat utilization ratio in the steam chamber rising stage,lateral expansion stage and downward expansion stage were derived respectively,which can realize the rapid prediction of key indicators in the specific development stage or the whole life cycle of SAGD. (3) By comparing with the actual production indexes of the well group in 6.4 years,the coincidence rates of predicted oilsteam ratio and predicted water-cut are above 95%,which confirms the reliability of the analytical model and the program design. (4) According to the reservoir parameters of Zhong 32 well area in Fengcheng oilfield of Junggar Basin,the predicted and analyzed SAGD steam heat utilization rate and key development indicators under different oil layer thickness conditions show that when the steam heat utilization ratio is greater than 35% and the oilsteam ratio is greater than 0.15,the corresponding oil layer thickness should be greater than 12 m.

Key words: unsteady heat transfer, steam-assisted gravity drainage, heat loss, steam heat utilization ratio, oilsteam ratio, Zhong 32 well area, Fengcheng oilfield, Junggar Basin

中图分类号: 

  • TE345
[1] BUTLER R M. A new approach to the modelling of steam-assisted gravity drainage[J]. Journal of Canadian Petroleum Technology, 1985,24 (3): 42-51.
[2] BULTER R M. Steam-assisted gravity drainage: Concept,development,performance and future[J]. Journal of Canadian Petroleum Technology,1994,33 (2): 44-50.
[3] 周明升. 超稠油蒸汽辅助重力泄油开发技术应用研究[D].大庆: 东北石油大学,2010: 30-38. ZHOU Mingsheng. Study on the application of steam assisted gravity drainage technology in the development of super heavy oil[D]. Daqing: Northeast Petroleum University,2010: 30-38.
[4] 王大为,刘小鸿,张风义,等. 各向异性稠油油藏SAGD产能公式校正[J].岩性油气藏,2014,26 (1): 123-126. WANG Dawei,LIU Xiaohong,ZHANG Fengyi,et al. Correction of SAGD productivity formula in anisotropic heavy oil reservoir[J]. Lithologic Reservoirs,2014,26 (1): 123-126.
[5] 孙新革. 浅层超稠油双水平井SAGD技术油藏工程优化研究与应用[D].南充: 西南石油大学,2012: 4-127. SUN Xinge. Reservoir engineering optimization research and application of SAGD technology in shallow super heavy oil dual horizontal wells[D]. Nanchong: Southwest Petroleum University, 2012: 4-127.
[6] 秦明. 蒸汽辅助重力泄油产量预测模型研究[D].成都: 西南石油大学,2016: 14-21. QIN Ming. Study on the production prediction model of steam assisted gravity drainage[D]. Chengdu: Southwest Petroleum University,2016: 14-21.
[7] 吴永彬,李秀峦,孙新革,等. 双水平井蒸汽辅助重力泄油注汽井筒关键参数预测模型[J]. 石油勘探与开发,2012,39 (4): 481-488. WU Yongbin,LI Xiuluan,SUN Xinge,et al. Key parameters forecast model for injector wellbores during the dual-well SAGD process[J]. Petroleum Exploration and Development,2012,39 (4): 481-488.
[8] 吴永彬,李秀峦,赵睿,等.双水平井SAGD循环预热连通判断新解析模型[J]. 西南石油大学学报 (自然科学版),2016, 38 (1): 84-91. WU Yongbin,LI Xiuluan,ZHAO Rui,et al. A new analytical model of heat communication judgement during heat circulation phase of dual-horizontal SAGD[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2016,38 (1): 84-91.
[9] BUTLER R M. 重油和沥青的热力开采工艺[M]. 王秉璋,译. 北京: 石油工业出版社,1994: 54-65. Butler R M. Thermal recovery of oil and bitumen[M]. WANG Bingzhang,trans. Beijing: Petroleum Industry Press,1994: 54-65.
[10] SIAVASHI M,GARUSI H,DERAKHSHAN S. Numerical simulation and optimization of steam-assisted gravity drainage with temperature,rate,and well distance control using an efficient hybrid optimization technique[J]. Numerical Heat Transfer Applications,2017,72 (9): 1-24.
[11] SIVARAMKRISHNAN K,HUANG B,JANA A K. Predicting wellbore dynamics in a steam-assisted gravity drainage system: Numeric and semi-analytic model,and validation[J]. Applied Thermal Engineering,2015,91: 679-686.
[12] 于天忠,张建国,叶双江,等. 辽河油田曙一区杜84块超稠油油藏水平井热采开发技术研究[J]. 岩性油气藏,2011,23 (6): 114-119. YU Tianzhong,ZHANG Jianguo,YE Shuangjiang,et al. Development technology with thermal recovery for horizontal well of superheavy oil reservoir in Du 84 block in Shu 1 area,Liaohe Oilfield[J]. Lithologic Reservoirs,2011,23 (6): 114-119.
[13] PANG Zhanxi,WU Zhengbin,ZHAO Meng. A novel method to calculate consumption of non-condensate gas during steam assistant gravity drainage in heavy oil reservoirs[J]. Energy,2017, 130: 76-85.
[14] 田杰,刘慧卿,庞占喜,等. 高压环境双水平井SAGD三维物理模拟实验[J]. 石油学报,2017,38 (4): 95-102. TIAN Jie,LIU Huiqing,PANG Zhanxi,et al. Experiment of 3D physical simulation on dual horizontal well SAGD under high pressure condition[J]. Acta Petrolei Sinica,2017,38 (4): 95-102.
[15] 宫博识,文华国,李丛林,等. 准噶尔盆地乌尔禾地区风城组沉积环境分析[J]. 岩性油气藏,2014,26 (2): 59-66. GONG Boshi,WEN Huaguo,LI Conglin,et al. Sedimentary environment of Fengcheng Formation in Urho area,Junggar Basin[J]. Lithologic Reservoirs,2014,26 (2): 59-66.
[16] 杨帆,卞保力,刘慧颖,等. 玛湖凹陷二叠系夏子街组限制性湖盆扇三角洲沉积特征[J]. 岩性油气藏,2022,34 (5): 63-72. YANG Fan,BIAN Baoli,LIU Huiying,et al. Sedimentary characteristics of fan delta in restricted lacustrine basin of Permian Xiazijie Formation in Mahu Sag[J]. Lithologic Reservoirs,2022, 34 (5): 63-72.
[17] 冯有良,胡素云,李建忠,等. 准噶尔盆地西北缘同沉积构造坡折对层序建造和岩性油气藏富集带的控制[J]. 岩性油气藏,2018,30 (4): 14-25. FENG Youliang,HU Suyun,LI Jianzhong,et al. Controls of syndepotitional structural slope-break zones on sequence architecture and enrichment zones of lithologic reservoirs in northwestern margin of Junggar Basin[J]. Lithologic Reservoirs,2018, 30 (4): 14-25.
[18] CARSLAW H S,JAEGER J C. Conduction of heat in solids[M]. Oxford: Oxford Science Publications,1986.
[19] 杨世铭,陶文铨. 传热学[M]. 北京: 高等教育出版社,2006: 133-137. YANG Shiming,TAO Wenquan. Heat transfer[M]. Beijing: Higher Education Press,2006: 133-137.
[20] BUTLER R M,MCNAB G S,LO H Y. Theoretical studies on the gravity drainage of heavy oil during in-situ steam heating[J]. The Canadian Journal of Chemical Engineering,1981,59: 455-60.
[21] PINTO H,WANG X,GATES I. On the ratio of energy produced to energy injected in SAGD: Long-term consequences of early stage operational decisions[J]. Journal of Petroleum Science and Engineering,2021,199: 108271.
[1] 曾治平, 柳忠泉, 赵乐强, 李艳丽, 王超, 高平. 准噶尔盆地西北缘哈山地区二叠系风城组页岩油储层特征及其控制因素[J]. 岩性油气藏, 2023, 35(1): 25-35.
[2] 卢迎波. 超稠油注气次生泡沫油生成机理及渗流特征[J]. 岩性油气藏, 2022, 34(6): 152-159.
[3] 吕正祥, 廖哲渊, 李岳峰, 宋修章, 李响, 何文军, 黄立良, 卿元华. 玛湖凹陷二叠系风城组碱湖云质岩储层成岩作用[J]. 岩性油气藏, 2022, 34(5): 26-37.
[4] 白雨, 汪飞, 牛志杰, 金开来, 李沛毅, 许多年, 陈刚强. 准噶尔盆地玛湖凹陷二叠系风城组烃源岩生烃动力学特征[J]. 岩性油气藏, 2022, 34(4): 116-127.
[5] 雷海艳, 郭佩, 孟颖, 齐婧, 刘金, 张娟, 刘淼, 郑雨. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价[J]. 岩性油气藏, 2022, 34(3): 142-153.
[6] 常少英, 刘玲利, 崔钰瑶, 王锋, 宋明星, 穆晓亮. 浅水三角洲薄砂层地震沉积表征技术——以准噶尔盆地芳草湖地区清水河组为例[J]. 岩性油气藏, 2022, 34(1): 139-147.
[7] 王剑, 周路, 靳军, 向宝力, 胡文瑄, 杨洋, 康逊. 准噶尔盆地玛南地区乌尔禾组砂砾岩优质储层特征[J]. 岩性油气藏, 2021, 33(5): 34-44.
[8] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[9] 陈棡, 卞保力, 李啸, 刘刚, 龚德瑜, 曾德龙. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 46-56.
[10] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[11] 余兴, 尤新才, 白雨, 李鹏, 朱涛. 玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J]. 岩性油气藏, 2021, 33(1): 81-89.
[12] 关新, 潘树新, 曲永强, 许多年, 张寒, 马永平, 王国栋, 陈雪珍. 准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力[J]. 岩性油气藏, 2021, 33(1): 90-98.
[13] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[14] 李树博, 郭旭光, 郑孟林, 王泽胜, 刘新龙. 准噶尔盆地东部西泉地区石炭系火山岩岩性识别[J]. 岩性油气藏, 2021, 33(1): 258-266.
[15] 胡潇, 曲永强, 胡素云, 潘建国, 尹路, 许多年, 滕团余, 王斌. 玛湖凹陷斜坡区浅层油气地质条件及勘探潜力[J]. 岩性油气藏, 2020, 32(2): 67-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!