岩性油气藏 ›› 2023, Vol. 35 ›› Issue (1): 145–159.doi: 10.12108/yxyqc.20230113

• 石油工程与油气田开发 • 上一篇    下一篇

砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用

吕栋梁1, 杨健1, 林立明2, 张恺漓1, 陈燕虎3   

  1. 1. 西南石油大学 石油与天然气工程学院, 成都 610500;
    2. 物华能源科技有限责任公司, 西安 710000;
    3. 中国石油化工集团有限公司 胜利油田分公司, 山东 东营 257001
  • 收稿日期:2022-06-13 修回日期:2022-08-04 出版日期:2023-01-01 发布日期:2023-01-06
  • 第一作者:吕栋梁(1980-),男,硕士,高级实验师,主要从事油气田开发相关实验、理论教学及研究工作。地址:(610500)四川省成都市新都区新都大道8号西南石油大学。Email:82829149@qq.com
  • 通信作者: 杨健(1998-),男,西南石油大学在读硕士研究生,研究方向为油气藏渗流机理及数值模拟。Email:1763217054@qq.com。
  • 基金资助:
    国家科技重大专项课题“特高含水后期整装油田延长经济寿命期开发技术”(编号: 2016ZX05011-001)资助

Characterization model of oil-water relative permeability curves of sandstone reservoir and its application in numerical simulation

Lü Dongliang1, YANG Jian1, LIN Liming2, ZHANG Kaili1, CHEN Yanhu3   

  1. 1. Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China;
    2. Wuhua Energy Technology Co., Ltd., Xi'an 710000, China;
    3. Sinopec Shengli Oilfield Company, Dongying 257001, Shandong, China
  • Received:2022-06-13 Revised:2022-08-04 Online:2023-01-01 Published:2023-01-06

摘要: 以胜利油田孤岛油田新近系馆陶组砂岩储层为例,在岩心油水相渗测试实验及地质认识的基础上,建立了油水相对渗透率曲线表征模型,并通过数值模拟建立了砂岩油藏开采动态模型,探讨了不同韵律性、不同开发方式下相渗模型的适用条件及对开发结果的影响。研究结果表明:①分别拟合气测渗透率、平均孔喉半径等7个影响相渗曲线的参数和相渗曲线端点以及曲线形态之间的相关性,通过交替条件期望法进行多元回归,以气测渗透率和平均孔喉半径建立了束缚水饱和度计算模型,以渗透率变异系数和特征结构参数建立了残余油饱和度计算模型,以气测渗透率建立了束缚水下油相相对渗透率计算模型,以渗透率变异系数和特征结构参数建立了残余油下水相相对渗透率计算模型,4个端点表征模型的绝对误差都小于0.1;以霍纳普相渗曲线形态指数经验公式为基础,利用均质系数建立了油相相渗曲线形态表征模型,利用渗透率变异系数和孔喉比建立了水相相渗曲线形态表征模型,2个形态表征模型的绝对误差小于1.7,模型可靠。②在砂岩储层衰竭式开发模拟中,生产动态主要受油相相渗的影响,利用油水相渗曲线模型推导出的相渗曲线再进行归一化处理,在一定程度上能够消除储层非均质性带来的影响;在注水开发模拟中,储层的非均质性会加剧水相相渗对生产动态的影响,模拟时采用对产油量贡献最大的储层的相渗曲线更能接近实际生产动态。

关键词: 油水相对渗透率曲线, 含水饱和度, 多元回归法, 数值模拟, 交替条件期望法, 注水生产, 馆陶组, 孤岛油田, 胜利油田

Abstract: Taking the sandstone reservoirs of Neogene Guantao Formation in Gudao oilfield of Shengli Oilfield as an example,based on oil-water relative permeability test and geological knowledge,the characterization model of oil-water relative permeability curves was established. The sandstone reservoir model was established by numerical simulation method,and the applicable conditions of model under different rhythms and different development methods and the influence on development results were discussed. The results show that: (1) The correlations of 7 parameters affecting relative permeability curves,such as permeability measured with gas and average pore-throat radius,with endpoints of relative permeability curves and the shape of curves were respectively fitted. Multiple regression method was carried out by using the alternate conditional expectation method,irreducible water saturation calculation model was established based on permeability measured with gas and average pore-throat radius,and residual oil saturation calculation model was established based on permeability variation coefficient and significant parameters. Based on permeability measured with gas,calculation model for relative permeability of oil phase under irreducible water was established. Based on coefficient of variation and significant parameters, calculation model for relative permeability of water phase under residual oil was also established. The absolute errors of the four endpoint characterization models are all less than 0.1. Referring to Honarpour empirical formula, relative permeability curve shape calculation model of oil phase was established based on uniformity coefficient, and relative permeability curve shape calculation model of water phase was established based on permeability variation coefficient and pore-throat ratio. The absolute errors of the two models are less than 1.7,which proves the reliability of models. (2) In the depletion development simulation of sandstone reservoirs,the production performance is mainly controlled by the relative permeability of oil phase. Normalizing curves derived from the model can eliminate the influence of reservoir heterogeneity to a certain extent. In simulated waterflood development,reservoir heterogeneity can exacerbate the impact of water phase relative permeability on production performance. In the simulation,the relative permeability curve of the reservoir that contributes the most to oil production can be closer to the actual production.

Key words: oil-water relative permeability curve, water saturation, multiple regression method, numerical simulation, alternate conditional expectation method, waterflood development, Guantao Formation, Gudao oilfield, Shengli Oilfield

中图分类号: 

  • TE341
[1] 徐春梅,张荣,马丽萍,等. 注水开发储层的动态变化特征及影响因素分析[J]. 岩性油气藏,2010,22 (增刊1): 89-92. XU Chunmei,ZHANG Rong,MA Liping,et al. Reservoir dynamic variation characteristics after water flooding and its influencing factors[J]. Lithologic Reservoirs,2010,22 (Suppl 1): 89-92.
[2] 周丛丛. 聚合物驱相对渗透率计算的微观模拟研究[J]. 岩性油气藏,2011,23 (3): 119-123. ZHOU Congcong. Microscopic simulation of relative permeability curves in polymer flooding[J]. Lithologic Reservoirs,2011, 23 (3): 119-123.
[3] 张人雄,李玉梅,李建民,等. 砂砾岩油藏油水相对渗透率曲线异常形态成因探讨[J]. 石油勘探与开发,1996,23 (2): 79-83. ZHANG Renxiong,LI Yumei,LI Jianmin,et al. An approach to the origin of anomalous shape of oil-water relative permeability curves in sandstone and conglomerate reservoirs[J]. Petroleum Exploration and Development,1996,23 (2): 79-83.
[4] 姜瑞忠,乔欣,滕文超,等. 储层物性时变对油藏水驱开发的影响[J]. 断块油气田,2016,23 (6): 768-771. JIANG Ruizhong,QIAO Xin,TENG Wenchao,et al. Impact of physical properties time variation on waterflooding reservoir development[J]. Fault-Block Oil & Gas Field,2016,23 (6): 768-771.
[5] 李传亮,朱苏阳. 关于油藏含水上升规律的若干问题[J]. 岩性油气藏,2016,28 (3): 1-5. LI Chuanliang,ZHU Suyang. Some topics about water cut rising rule in reservoirs[J]. Lithologic Reservoirs,2016,28 (3): 1-5.
[6] 薛建强,覃孝平,赖南君,等. 超低渗透油田降压增注体系的研究与应用[J]. 岩性油气藏,2013,25 (6): 107-111. XUE Jianqiang,QIN Xiaoping,LAI Nanjun,et al. Research and application of depressurization and stimulation of injection well for ultra-low permeability oilfield[J]. Lithologic Reservoirs,2013,25 (6): 107-111.
[7] 王曙光,赵国忠,余碧君. 大庆油田油水相对渗透率统计规律及其应用[J]. 石油学报,2005,26 (3): 78-81. WANG Shuguang,ZHAO Guozhong,YU Bijun. Statistical regularity of oil-water relative permeability in Daqing oilfield[J]. Acta Petrolei Sinica,2005,26 (3): 78-81.
[8] ROGHANIAN R,REZA R M,HAGHIGHI M. Prediction of key points of water-oil relative permeability curves using the linear regression technique[J]. Petroleum Science and Technology,2012,30 (5): 518-533.
[9] 王东琪,殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏,2017,29 (3): 159-164. WANG Dongqi,YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs,2017,29 (3): 159-164.
[10] 王守磊,李治平,耿站立,等. 油水相对渗透率曲线预测模型建立及应用[J]. 科学技术与工程,2018,18 (12): 52-59. WANG Shoulei,LI Zhiping,GENG Zhanli,et al. The establishment and application of prediction model for oil-water relative permeability curve[J]. Science Technology and Engineering, 2018,18 (12): 52-59.
[11] AL-OTAIBI S S,AL-MAJED A A. Factors affecting pseudo relative permeability curves[J]. Journal of Petroleum Science and Engineering,1998,21 (3): 249-261.
[12] ABOUJAFAR S M. Effect of oil viscosity and brine salinity/viscosity on water/oil relative permeability and residual saturations[R]. Abu Dhabi: SPWLA 55th Annual Logging Symposium,2017.
[13] 孙艳宇. 低渗透油藏油水相渗曲线影响因素分析[J]. 辽宁化工,2017,46 (1): 53-55. SUN Yanyu. Analysis on influence factors of oil-water relative permeability curve in low permeability reservoirs[J]. Liaoning Chemical Industry,2017,46 (1): 53-55.
[14] 董大鹏. 非稳态相渗实验数据的处理方法[J]. 西南石油大学学报 (自然科学版),2014,36 (6): 110-116. DONG Dapeng. Processing method to the data of relative permeability in unsteady state displacement[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014,36 (6): 110-116.
[15] 汤述安,郑泽忠,朱学波. 多元回归分析在油气产能预测中的应用[J]. 科技创新导报,2008 (21): 169-171. TANG Shu'an,ZHENG Zezhong,ZHU Xuebo. Application of multiple regression analysis in oil and gas capacity forecasting[J]. Science and Technology Innovation Herald,2008 (21): 169-171.
[16] 邵长金,李相方. 用交替条件期望变换确定岩石物性参数[J]. 天然气工业,2005,25 (7): 30-31. SHAO Changjin,LI Xiangfang. Determining petrophysical parameters by alternating conditional expectation transform[J]. Natural Gas Industry,2005,25 (7): 30-31.
[17] BREIMAN L,FRIEDMAN J H. Estimating optimal transformations for multiple regression and correlation[J]. Journal of the American Statistical Association,1985,80 (391): 580-598.
[18] 李宁,孙雷,潘毅,等. 油水相渗曲线归一化新方法研究[J]. 复杂油气藏,2015,8 (1): 38-40. LI Ning,SUN Lei,PAN Yi,et al. A new method for normalizing oil-water relative permeability curves[J]. Complex Hydrocarbon Reservoirs,2015,8 (1): 38-40.
[19] 潘婷婷,张枫,邢昆明,等. 不同储层相对渗透率曲线归一化方法评价[J]. 大庆石油地质与开发,2016,35 (3): 78-82. PAN Tingting,ZHANG Feng,XING Kunming,et al. Evaluation of the relative-permeability-curve normalizing method for the different reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing,2016,35 (3): 78-82.
[20] 刘丹,潘保芝,陈刚,等. 致密砂岩气水相渗曲线的统一描述方法[J]. 地球物理学进展,2015,30 (1): 300-303. LIU Dan,PAN Baozhi,CHEN Gang,et al. Unified description on compact sandstone gas-water relative permeability curve[J]. Progress in Geophysics,2015,30 (1): 300-303.
[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[3] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[4] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[5] 岳世俊, 刘应如, 项燚伟, 王玉林, 陈汾君, 郑长龙, 景紫岩, 张婷静. 一种水侵气藏动态储量和水侵量计算新方法[J]. 岩性油气藏, 2023, 35(5): 153-160.
[6] 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168.
[7] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[8] 刘阳平, 吴博然, 于忠良, 余成林, 王立鑫, 尹艳树. 辫状河砂岩储层三维地质模型重构技术——以冀东油田高尚堡区块新近系馆陶组为例[J]. 岩性油气藏, 2022, 34(4): 159-170.
[9] 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103.
[10] 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141.
[11] 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51.
[12] 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188.
[13] 赵军, 韩东, 何胜林, 汤翟, 张涛. 基于水气比计算的低对比度储层流体性质识别[J]. 岩性油气藏, 2021, 33(4): 128-136.
[14] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[15] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .