岩性油气藏 ›› 2023, Vol. 35 ›› Issue (1): 132–144.doi: 10.12108/yxyqc.20230112

• 地质勘探 • 上一篇    

柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征

夏青松1, 陆江2, 杨鹏1, 张昆1, 杨朝屹1, 聂俊杰1, 朱云舫1, 李立芳1   

  1. 1. 西南石油大学 地球科学与技术学院, 成都 610500;
    2. 南方海洋科学与工程广东省实验室, 广东 湛江 524000
  • 收稿日期:2022-08-29 修回日期:2022-09-09 发布日期:2023-01-06
  • 通讯作者: 陆江(1979-),男,硕士,高级工程师,主要从事石油与天然气地质方面的研究工作。Email:lujiang@zjblab.com。 E-mail:lujiang@zjblab.com
  • 作者简介:夏青松(1978-),男,博士,副教授,主要从事石油地质方面的科研与教学工作。地址:(610500)成都市新都大道8号西南石油大学地球科学与技术学院。Email:3036871@qq.com
  • 基金资助:
    国家科技重大专项“岩性油气藏气成藏主控因素与富集机理”(编号: 2017ZX06001)资助

Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi area, Qaidam Basin

XIA Qingsong1, LU Jiang2, YANG Peng1, ZHANG Kun1, YANG Chaoyi1, NIE Junjie1, ZHU Yunfang1, LI Lifang1   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524000, Guangdong, China
  • Received:2022-08-29 Revised:2022-09-09 Published:2023-01-06

摘要: 柴达木盆地英西地区渐新统下干柴沟组上段为“自生自储”型油气藏。利用X射线衍射全岩矿物含量分析、薄片鉴定、扫描电镜观察、二氧化碳吸附、氮气吸附/脱附、高压压汞、核磁共振、自发渗吸等实验手段,系统分析柴达木盆地英西地区渐新统下干柴沟组上段储层特征,精细表征了其微观孔隙结构特征。研究结果表明:①英西地区渐新统下干柴沟组上段储层为细粒沉积岩,其矿物成分主要为白云石和铁白云石等碳酸盐,含有长石、石英等陆源碎屑,伊蒙混层和伊利石等黏土矿物。②研究区储集岩整体较为致密,孔隙度为1.0%~14.5%,平均为4.0%,渗透率为0.011~6.146mD,平均为0.125mD,具有低孔特低渗特征。③研究区储集岩的孔隙类型以晶间孔、溶蚀孔、溶洞和裂缝为主,储层孔隙形态为平行狭缝型。④研究区微孔的质量体积平均为0.0056mL/g,占总孔的质量体积的34.70%;中孔的质量体积平均为0.0066mL/g,占总孔体积的40.84%,宏孔的质量体积相对较小,为0.0039mL/g,占总孔体积的24.46%,因此,对岩石储集性贡献最大的为中孔,其次是微孔。

关键词: 晶间孔, 低孔特低渗, 平行狭缝型孔隙形态, 吸附/脱附实验, 核磁共振, 下干柴沟组上段, 渐新统, 英西地区, 柴达木盆地

Abstract: The upper member of Oligocene Xiaganchaigou Formation (E32) in Yingxi area of Qaidam Basin is a self-generation and self-storage type oil and gas reservoir. By using a series of experimental means such as X-ray diffraction analysis of whole rock mineral content,thin section identification,scanning electron microscope observation,carbon dioxide adsorption,nitrogen adsorption/desorption,high pressure mercury injection,nuclear magnetic resonance and spontaneous absorption,the reservoir characteristics of E32 in Yingxi area were systematically analyzed and the microscopic pore structure characteristics were finely characterized. The results show that: (1) The reservoirs of E32 in Yingxi area are dominated by fine-grained sedimentary rocks. Its mineral composition is mainly carbonate such as dolomite and ankerite,containing terrigenous clasts such as feldspar and quartz,and clay minerals such as illite-montmorillonite mixed-layer and illite. (2) The reservoir rocks in the study area are relatively dense as a whole. The porosity is 1.0%-14.5%,with an average of 4.0%,while the permeability is 0.011-6.146 mD, with an average of 0.125 mD,which is characterized by low porosity and ultra-low permeability. (3) The pore types of the reservoir rocks in the study area are mainly intercrystalline pores,dissolved pores,caves and fractures, and the pores are parallel slit-shaped. (4) The average pore volume of micropores in the study area is 0.005 6 mL/g, accounting for 34.70% of the total pore volume. The average pore volume of mesopores is 0.006 6 mL/g,accounting for 40.84% of the total pore volume. The pore volume of macropores is 0.0039 mL/g,relatively small,accounting for 24.46% of the total pore volume. Therefore,mesopores contribute the most to rock reservoirs,followed by micropore.

Key words: intercrystalline pore, low porosity and extra-low permeability, parallel slit-shaped pore, adsorption/ desorption experiments, nuclear magnetic resonance, upper member of Xiaganchaigou Formation, Oligocene, Yingxi area, Qaidam Basin

中图分类号: 

  • TE122.2
[1] 贾承造,邹才能,李建忠,等. 中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报,2012,33 (3): 343-350. JIA Chengzao,ZOU Caineng,LI Jianzhong,et al. Assessment criteria,main types,basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica,2012,33 (3): 343-350.
[2] 杜江民,龙鹏宇,杨鹏,等. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展,2020,35 (1): 52-69. DU Jiangmin,LONG Pengyu,YANG Peng,et al. Characteristics of carbonate reservoir and its forming conditions in continental lake basin of China[J]. Advances in Earth Science,2020,35 (1): 52-69.
[3] 袁剑英,黄成刚,曹正林,等.咸化湖盆白云岩碳氧同位素特征及古环境意义: 以柴西地区始新统下干柴沟组为例[J]. 地球化学,2015,44 (3): 254-266. YUAN Jianying,HUANG Chenggang,CAO Zhenglin,et al. Carbon and oxygen isotopic composition of saline lacustrine dolomite and its paleoenvironmental significance: A case study of Lower Eocene Ganchaigou Formation in western Qaidam Basin[J]. Geochimica,2015,44 (3): 254-266.
[4] 匡立春,唐勇,雷德文,等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发,2012, 39 (6): 657-667. KUANG Lichun,TANG Yong,LEI Dewen,et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock,Junggar Basin,NW China[J]. Petroleum Exploration and Development,2012,39 (6): 657-667.
[5] 焦养泉,吴立群,何谋春,等. 准噶尔盆地南缘芦草沟组烃源岩产状、热演化历史与烃的初次运移过程[J]. 中国科学D辑: 地球科学,2007,37 (增刊1): 93-102. JIAO Yangquan,WU Liqun,HE Mouchun,et al. Occurrence, thermal evolution history and primary hydrocarbon migration of source rocks of Lucaogou Formation in southern margin of Junggar Basin[J]. Science in China Series D: Earth Science, 2007,37 (Suppl 1): 93-102.
[6] 邱振,施振生,董大忠,等. 致密油源储特征与聚集机理: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油勘探与开发,2016,43 (6): 928-939. QIU Zhen,SHI Zhensheng,DONG Dazhong,et al. Geological characteristics of source rock and reservoir of tight oil and its accumulation mechanism: A case study of Permian Lucaogou Formation in Jimusar Sag,Junggar Basin[J]. Petroleum Exploration and Development,2016,43 (6): 928-939.
[7] 李新宁,马强,梁辉,等. 三塘湖盆地二叠系芦草沟组二段混积岩致密油地质特征及勘探潜力[J]. 石油勘探与开发,2015, 42 (6): 763-771. LI Xinning,MA Qiang,LIANG Hui,et al. Geological characteristics and exploration potential of diamictite tight oil in the second member of the Permian Lucaogou Formation,Santanghu Basin,NW China[J]. Petroleum Exploration and Development,2015,42 (6): 763-771.
[8] 丁一,李智武,冯逢,等. 川中龙岗地区下侏罗统自流井组大安寨段湖相混合沉积及其致密油勘探意义[J]. 地质论评, 2013,59 (2): 389-400. DING Yi,LI Zhiwu,FENG Feng,et al. Mixing of lacustrine siliciclastic-carbonate sediments and its significance for tight oil exploration in the Daanzhai member,Ziliujing Formation,Lower Jurassic,in Longgang area,central Sichuan Basin[J]. Geological Review,2013,59 (2): 389-400.
[9] 韩刚,张文婧,黄清华,等. 松辽盆地白垩系青山口阶界线层型剖面研究[J]. 地层学杂志,2012,36 (3): 569-578. HAN Gang,ZHANG Wenjing,HUANG Qinghua,et al. Boundary stratotype of the Cretaceous Qingshankouan stage in the Songliao Basin[J]. Journal of Stratigrapgy,2012,36 (3): 569-578.
[10] 刘护创,王文慧,陈治军,等. 银额盆地哈日凹陷白垩系云质泥岩气藏特征与成藏条件[J]. 岩性油气藏,2019,31 (2): 24-34. LIU Huchuang,WANG Wenhui,CHEN Zhijun,et al. Characteristics and accumulation conditions of Cretaceous dolomitic mudstone gas reservoir in Hari Sag,Yin'e Basin[J]. Lithologic Reservoirs,2019,31 (2): 24-34.
[11] 黄成刚,常海燕,崔俊,等.柴达木盆地西部地区渐新世沉积特征与油气成藏模式[J].石油学报,2017,38 (11): 1230-1243. HUANG Chenggang,CHANG Haiyan,CUI Jun,et al. Sedimentary characteristics and hydrocarbon accumulation model of Oligocene reservoirs in the western Qaidam Basin,China[J]. Acta Petrolei Sinica,2017,38 (11): 1230-1243.
[12] 付锁堂,马达德,郭召杰,等. 柴达木走滑叠合盆地及其控油气作用[J]. 石油勘探与开发,2015,42 (6): 712-722. FU Suotang,MA Dade,GUO Zhaojie,et al. Strike-slip superimposed Qaidam Basin and its control on oil and gas accumulation,NW China[J]. Petroleum Exploration and Development, 2015,42 (6): 712-722.
[13] YUAN Jianying,HUANG Chenggang,ZHAO Fan,et al. Carbon and oxygen isotopic composition,and palaeoenvironmental significance of saline lacustrine dolomite from the Qaidam Basin, western China[J]. Journal of Petroleum Science and Engineering,2015,135 (11): 596-607.
[14] 袁剑英,黄成刚,夏青松,等. 咸化湖盆碳酸盐岩储层特征及孔隙形成机理: 以柴西地区渐新统下干柴沟组为例[J]. 地质论评,2016,62 (1): 111-126. YUAN Jianying,HUANG Chenggang,XIA Qingsong,et al. The characteristics of carbonate reservoir,and formation mechanism of pores in the saline lacustrine basin: A case study of the lower Eocene Ganchaigou Formation in western Qaidam Basin[J]. Geological Review,2016,62 (1): 111-126.
[15] 黄成刚,袁剑英,田光荣,等.柴西地区渐新统湖相白云岩储层地球化学特征及形成机理[J],地学前缘,2016,23 (3): 230-242. HUANG Chenggang,YUAN Jianying,TIAN Guangrong,et al. The geochemical characteristics and formation mechanism of the Eocene lacustrine dolomite reservoirs in the western Qaidam[J]. Earth Science Frontiers,2016,23 (3): 230-242.
[16] 李国欣,朱如凯,张永庶,等. 柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义[J]. 石油勘探与开发,2022,49 (1): 18-31. LI Guoxin,ZHU Rukai,ZHANG Yongshu,et al. Geological characteristics,evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin,NW China[J]. Petroleum Exploration and Development,2022,49 (1): 18-31.
[17] 黄成刚,倪祥龙,马新民,等. 致密湖相碳酸盐岩油气富集模式及稳产、高产主控因素[J]. 西北大学学报 (自然科学版), 2017,47 (5): 724-738. HUANG Chenggang,NI Xianglong,MA Xinmin,et al. Petroleum and gas enrichment pattern and major controlling factors of stable and high production of tight lacustrine carbonate rock reservoirs: A case study of the Yingxi area in Qaidam Basin[J]. Journal of Northwest University (Natural Science Edition), 2017,47 (5): 724-738.
[18] 黄成刚,王建功,吴丽荣,等. 古近系湖相碳酸盐岩储集特征与含油性分析: 以柴达木盆地英西地区为例[J]. 中国矿业大学学报,2017,46 (5): 909-922. HUANG Chenggang,WANG Jiangong,WU Lirong,et al. Characteristics of lacustrine carbonate reservoirs in Paleogene and oil-bearing property analysis: A case study of the Yingxi area from the Western Qaidam Basin[J]. Journal of China University of Mining & Technology,2017,46 (5): 909-922.
[19] 杜江民,龙鹏宇,秦莹民,等. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏,2021,33 (5): 1-10. DU Jiangmin,LONG Pengyu,QIN Yingmin,et al. Characteristics and accumulation model of Oligocene E32 reservoir in Yingxi area,Qaidam Basin[J]. Lithologic Reservoirs,2021,33 (5): 1-10.
[20] 刘庆,曾翔,王学军,等.东营凹陷沙河街组沙三下-沙四上亚段泥页岩岩相与沉积环境的响应关系[J]. 海洋地质与第四纪地质,2017,37 (3): 147-156. LIU Qing,ZENG Xiang,WANG Xuejun,et al. Lithofacies of mudstone and shale deposits of the Es3z-Es4s formation in Dongying Sag and their depositional environment[J]. Marine Geology & Quaternary Geology,2017,37 (3): 147-156.
[21] 王勇,王学军,宋国奇,等.渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系[J]. 石油勘探与开发,2016,43 (5): 696-704. WANG Yong,WANG Xuejun,SONG Guoqi,et al. Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression,Bohai Bay Basin[J]. Petroleum Exploration and Development,2016,43 (5): 696-704.
[22] 彭军,曾垚,杨一茗,等. 细粒沉积岩岩石分类及命名方案探讨[J]. 石油勘探与开发,2022,49 (1): 106-115. PENG Jun,ZENG Yao,YANG Yiming,et al. Discussion on classification and naming scheme of fine-grained sedimentary rocks[J]. Petroleum Exploration and Development,2022,49 (1): 106-115.
[23] 李廷微,姜振学,许辰璐,等.沾化凹陷沙三下亚段陆相页岩储层微-纳米孔隙结构特征[J]. 石油科学通报,2017,2 (4): 445-456. LI Tingwei,JIANG Zhenxue,XU Chenlu,et al. Shale micro-nano pore structure characteristics in the lower third member of the continental Shahejie Formation,Zhanhua Sag[J]. Petroleum Science Bulletin,2017,2 (4): 445-456.
[24] 李廷微,姜振学,宋国奇,等.陆相和海相页岩储层孔隙结构差异性分析[J].油气地质与采收率,2019,26 (1): 65-71. LI Tingwei,JIANG Zhenxue,SONG Guoqi,et al. Analysis of differences in pore structure between continental and marine shale reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019,26 (1): 65-71.
[25] 国家能源局.油气储层评价方法: SY/T 6285-2011[S].北京: 石油工业出版社,2011. National Energy Administration. Evaluation method of oil and gas reservoir: SY/T 6285-2011[S]. Beijing: Petroleum Industry Press,2011.
[26] JELINEK L,KOVATS E. True surface areas from nitrogen adsorption experiments[J]. Langmuir,1994,10 (11): 4225-4231.
[27] SING K,EVERETT D,HAUL R,et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry,1985,57 (4): 603-619.
[28] 姜振学,唐相路,李卓,等.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘,2016,23 (2): 126-134. JIANG Zhenxue,TANG Xianglu,LI Zhuo,et al. The wholeaperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan Basin[J]. Earth Science Frontiers,2016,23 (2): 126-134.
[29] JI Wenming,HAO Fang,SCHULZ H,et al. The architecture of organic matter and its pores in highly mature gas shales of the lower Silurian Longmaxi Formation in the upper Yangtze platform,south China[J]. AAPG Bulletin,2019,103 (12): 2909-2942.
[30] 王朋飞,姜振学,李卓,等.渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征[J]. 地球科学,2017,42 (7): 1147-1156. WANG Pengfei,JIANG Zhenxue,LI Zhuo,et al. Micro-nano pore structure characteristics in the Lower Cambrian Niutitang shale,northeast Chongqing[J]. Earth Science,2017,42 (7): 1147-1156.
[31] 李卫兵,姜振学,李卓,等. 渝东南页岩微观孔隙结构特征及其控制因素[J]. 特种油气藏,2016,23 (2): 50-54. LI Weibing,JIANG Zhenxue,LI Zhuo,et al. Micro-pore structure characteristics of shale in southeast Chongqing and the controlling factors[J]. Special Oil & Gas Reservoirs,2016,23 (2): 50-54.
[32] WANG Yang,ZHU Yanming,CHEN Shangbin,et al. Characteristics of the nanoscale pore structure in northwestern Hunan shale gas reservoirs using field emission scanning electron microscopy,high-pressure mercury intrusion,and gas adsorption[J]. Energy & Fuels,2014,28: 945-955.
[33] BALZARINI M,BRANCOLINI A,GOSSENBERG P. Permeability estimation from NMR diffusion measurements in reservoir rocks[J]. Magnetic Resonance Imaging,1998,16 (5/6): 601-603.
[34] 宁传祥,姜振学,高之业,等.用核磁共振和高压压汞定量评价储层孔隙连通性: 以沾化凹陷沙三下亚段为例[J].中国矿业大学学报,2017,46 (3): 578-585. NING Chuanxiang,JIANG Zhenxue,GAO Zhiye,et al. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection: A case study of the lower section of Es3 in Zhanhua Sag[J]. Journal of China University of Mining & Technology,2017,46 (3): 578-585.
[1] 杨韬政, 刘成林, 田继先, 李培, 冉钰, 冯德浩, 李国雄, 吴育平. 柴达木盆地大风山凸起地层压力预测及成因分析[J]. 岩性油气藏, 2023, 35(1): 96-107.
[2] 谢坤, 苏程, 刘长龙, 梅杰, 于海涛, 何欣, 卢祥国. Cr3+聚合物弱凝胶调驱剖面变化规律及改善方法[J]. 岩性油气藏, 2022, 34(6): 160-170.
[3] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[4] 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53.
[5] 赵思思, 李建明, 柳金城, 李积永, 崔俊. 柴达木盆地英西地区古近系下干柴沟组上段TSR与储层改造[J]. 岩性油气藏, 2022, 34(2): 66-74.
[6] 毛锐, 牟立伟, 王刚, 樊海涛. 基于核磁共振自由弛豫特征的含油性评价方法——以玛湖凹陷下乌尔禾组砾岩储层为例[J]. 岩性油气藏, 2021, 33(5): 140-147.
[7] 杜江民, 龙鹏宇, 秦莹民, 张桐, 马宏宇, 盛军. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏, 2021, 33(5): 1-10.
[8] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[9] 李翔, 王建功, 李飞, 王玉林, 伍坤宇, 李亚锋, 李显明. 柴达木盆地西部始新统湖相微生物岩沉积特征——以西岔沟和梁东地区下干柴沟组为例[J]. 岩性油气藏, 2021, 33(3): 63-73.
[10] 冯德浩, 刘成林, 田继先, 太万雪, 李培, 曾旭, 卢振东, 郭轩豪. 柴达木盆地一里坪地区新近系盆地模拟及有利区预测[J]. 岩性油气藏, 2021, 33(3): 74-84.
[11] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[12] 龙国徽, 王艳清, 朱超, 夏志远, 赵健, 唐鹏程, 房永生, 李海鹏, 张娜, 刘健. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160.
[13] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[14] 孔红喜, 王远飞, 周飞, 朱军, 陈阳阳, 宋德康. 鄂博梁构造带油气成藏条件分析及勘探启示[J]. 岩性油气藏, 2021, 33(1): 175-185.
[15] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!