岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 140–147.doi: 10.12108/yxyqc.20210513

• 勘探技术 • 上一篇    下一篇

基于核磁共振自由弛豫特征的含油性评价方法——以玛湖凹陷下乌尔禾组砾岩储层为例

毛锐, 牟立伟, 王刚, 樊海涛   

  1. 中国石油新疆油田分公司 勘探开发研究院, 新疆 克拉玛依 834000
  • 收稿日期:2021-02-11 修回日期:2021-05-14 出版日期:2021-10-01 发布日期:2021-09-30
  • 作者简介:毛锐(1989-),男,硕士,工程师,主要从事储层测井评价方面的研究工作。地址:(834000)新疆克拉玛依市准噶尔路29号勘探开发研究院。Email:mrui@petrochina.com.cn。
  • 基金资助:
    国家重点基础研究发展计划(973计划)“准噶尔盆地岩性地层油气藏富集规律与目标评价”(编号:2017ZX05001-004)资助

Oil-bearing evaluation method based on NMR free relaxation characteristics: A case study of conglomerate reservoirs of lower Urho Formation in Mahu Sag,Junggar Basin

MAO Rui, MU Liwei, WANG Gang, FAN Haitao   

  1. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2021-02-11 Revised:2021-05-14 Online:2021-10-01 Published:2021-09-30

摘要: 准噶尔盆地玛湖凹陷二叠系下乌尔禾组砾岩储层具有低孔低渗、孔隙结构复杂、强非均质性的特点,常规电法测井和核磁共振差谱法均难以反映储层的含油性特征。为了解决这一问题,开展了轻质原油核磁自由弛豫测量与下乌尔禾组储层岩心含不同流体的核磁共振对比实验,实验显示:①轻质原油核磁共振自由弛豫T2谱横向弛豫时间起始于100.00 ms;②饱和水岩心核磁共振T2谱基本收敛于100.00 ms;③饱和油岩心核磁共振T2谱在100.00 ms后出现了与原油核磁共振T2谱相似的自由弛豫特征。这说明下乌尔禾组岩心以水润湿为主,饱和油岩心核磁T2谱大于100.00 ms的信号由轻质油的自由弛豫引起。将100.00 ms作为核磁共振测井含油信号的标志,构建敏感参数,建立了基于核磁自由弛豫特征的流体性质识别图版。在考虑渗透率对含油性影响的情况下,建立了含油饱和度计算模型。利用该方法对研究区22口探井31个层位进行了含油性测井评价,结果显示测井解释符合率达93.5%,应用效果良好。该方法为核磁共振测井在含油性测井评价中的应用提供了新的思路。

关键词: 核磁共振测井, 流体性质, 自由弛豫, 含油饱和度, 砾岩储层, 玛湖凹陷

Abstract: The conglomerate reservoirs of Lower Urho Formation in Mahu Sag of Junggar Basin have the characteri-stics of low porosity, low permeability, complex pore structure and strong heterogeneity. Conventional electrical logging and nuclear magnetic resonance(NMR) difference spectrum method are difficult to reflect the oilbearing characteristics of the reservoirs. To clarify the oil-bearing characteristics, NMR free relaxation measurements of light crude oil and NMR experiments of reservoir cores containing different fluids of lower Urho Formation were carried out. The results show that:①The transverse relaxation time of NMR free relaxation T2 spectrum of light crude oil starts from 100.00 ms. ②The T2 spectrum of saturated water core converges to 100.00 ms. ③The NMR T2 spectrum of saturated oil core shows free relaxation characteristics similar to that of crude oil after 100.00 ms. The above phenomenon shows that the core of study area is mainly wetted by water, and the signal of NMR T2 spectrum of saturated oil core greater than 100.00 ms is caused by the free relaxation of light oil. Taking 100.00 ms as the oil-bearing signal of NMR logging, the sensitive parameters were constructed, and the identification chart of fluid properties based on NMR free relaxation features was established. Considering the influence of permeability on oil-bearing property, a calculation model of oil saturation was established. The above method was used to evaluate the oil-bearing property of 31 layers in 22 exploration wells in the study area, the coincidence rate of logging interpretation approached to 93.5%, indicating that the method was effective. This method provides a new idea for the application of NMR logging in oil-bearing evaluation.

Key words: NMR logging, fluid properties, free relaxation, oil saturation, conglomerate reservoirs, Mahu Sag

中图分类号: 

  • TE132
[1] 匡立春, 孙中春, 毛志强, 等.核磁共振测井技术在准噶尔盆地油气勘探开发中的应用. 北京:石油工业出版社, 2015:1-10. KUANG L C, SUN Z C,MAO Z Q,et al. Application of NMR in Junggar Basin exploration and development. Beijing:Petroleum Industry Press, 2015:1-10.
[2] 邓克俊.核磁共振测井理论及应用.北京:中国石油大学出版社, 2010:1-20. DENG K J. Theory and application of nuclear magnetic resonance logging. Beijing:China University of Petroleum Press, 2010:1-20.
[3] COATES G R, XIAO L Z, PRAMMER M G. NMR logging principles and applications. Texas:Gulf Publishing Company, 1999.
[4] AKKURT R. NMR logging of natural gas reservoirs//GUILLIRY A J. SPWLA 36th Annual Logging Symposium Transactions, 1995.
[5] 谭茂金, 赵文杰, 范宜仁.用测井双TW观测数据识别储层流体性质.天然气工业, 2006, 26(4):38-40. TAN M J, ZHAO W J, FAN Y R. Identification of fluid property with NMR dual TW well logging data. Natural Gas Industry, 2006, 26(4):38-40.
[6] 谭茂金, 石耀霖, 赵文杰, 等.核磁共振双TW测井数据联合反演与流体识别.地球物理学报, 2008, 51(5):1582-1590. TAN M J, SHI Y L, ZHAO W J, et al. Joint inversion method for NMR dual-TW logging data and fluid typing. Chinese Journal of Geophysics, 2008, 51(5):1582-1590.
[7] PRAMMER M G. Lithology-independent gas detection by gradient NMR logging. SPE Annual Technical Conference and Exhibition proceedings, 1995.
[8] 谢然红, 肖立志, 刘家军.核磁共振测井时域分析法数值模拟及影响因素分析.地球物理学报, 2011, 54(8):2184-2192. XIE R H, XIAO L Z, LIU J J. Time domain analysis numerical simulation and influence factors of NMR logging. Chinese Journal of Geophysics, 2011, 54(8):2184-2192.
[9] 何宗斌, 倪静, 伍栋, 等.根据双TE测井确定含烃饱和度.岩性油气藏, 2007, 19(3):89-92. HE Z B, NI J, WU D, et al. Hydrocarbon saturation determined by dual-TE logging. Lithologic Reservoirs, 2007, 19(3):89-92.
[10] 李鹏举, 张智鹏, 姜大鹏.核磁共振测井流体识别方法综述. 测井技术, 2011, 35(5):396-401. LI P J, ZHANG Z P, JIANG D P. Review on fluid identification methods with NMR logging. Well Logging Technology, 2011, 35(5):396-401.
[11] LOOTESIJN W J. Determination of oil saturation from diffusion NMR logs. SPWLA 37th Annual Logging Symposium, 1996.
[12] HURLIMANN M D. Diffusion editing:New NMR measurement of saturation and pore Geometry. SPWLA 43rd Annual Logging Symposium, 2002.
[13] ZHAO Q S. Overview of magnetic resonance imaging logging technology. World Well Logging Technology, 2008, 23(2):8-13.
[14] 刘忠华, 李霞, 赵文智, 等.核磁共振增强扩散方法在复杂储集层流体识别中的应用.石油勘探与开发, 2010, 37(6):703-707. LIU Z H, LI X, ZHAO W Z, et al. Enhanced diffusion theory of nuclear magnetic resonance(NMR)and its application to fluid identification of complex reservoirs. Petroleum Exploration and Development, 2010, 37(6):703-707.
[15] AKKURT R. Enhanced diffusion:Expanding the range of NMR direct hydrocarbon typing applications. SPWLA 39th Annual Logging Symposium, 1998.
[16] 赵永刚, 吴非.核磁共振测井技术在储层评价中的应用.天然气工业, 2007, 27(7):42-44. ZHAO Y G, WU F. Application of nuclear magnetic resonance logging technique to reservoir evaluation. Natural Gas Industry, 2007, 27(7):42-44.
[17] 张筠, 吴见萌, 朱国璋.致密气核磁共振测井观测模式及气水弛豫分析:以四川盆地为例.天然气工业, 2018, 38(1):49-55. ZHANG J, WU J M, ZHU G Z. NMR logging activation sets selection and fluid relaxation characteristics analysis of tight gas reservoirs:A case study from the Sichuan Basin. Natural Gas Industry, 2018, 38(1):49-55.
[18] 张小莉, 冯乔, 王鹏, 等.核磁共振测井在致密含气砂岩中的应用.天然气工业, 2007, 27(3):40-42. ZHANG X L, FENG Q, WANG P, et al. The application of nuclear magnetic resonance logging in gas-bearing tight sandstone. Natural Gas Industry, 2007, 27(3):40-42.
[19] 李雄炎, 周金昱, 李洪奇, 等.复杂岩性及多相流体智能识别方法.石油勘探与开发, 2012, 39(2):243-248. LI X Y, ZHOU J Y, LI H Q, et al. Computational intelligent methods for predicting complex lithologies and multiphase fluids. Petroleum Exploration and Development, 2012, 39(2):243-248.
[20] 李阳, 肖立志, 孙华峰.核磁共振测井TDA识别油气的影响因素.波谱学杂志, 2012, 29(1):21-31. LI Y, XIAO L Z, SUN H F. Analyses of influencing factors of hydrocarbon identification using NMR time domain analysis. Chinese Journal of Magnetic Resonance, 2012, 29(1):21-31.
[21] 邵维志.核磁共振测井移谱差谱法影响因素实验分析.测井技术, 2003, 27(6):502-507. SHAO W Z. On effect of NMR differential and shifted spectrum method in laboratory. Well Logging Technology, 2003, 27(6):502-507.
[22] 肖立志.我国核磁共振测井应用中的若干重要问题.测井技术, 2007, 31(5):401-407. XIAO L Z. Some important issues for NMR logging applications in China. Well Logging Technology, 2007, 31(5):401-407.
[23] 邵维志, 贵兴海, 郝丽萍, 等.浅析核磁共振测井在储层流体性质识别方面的局限性.测井技术, 2014, 38(6):684-703. SHAO W Z, GUI X H, HAO L P, et al. Analysis of limitation reservoir fluid identification by using nuclear magnetic resonance logging. Well Logging Technology, 2014, 38(6):684-703.
[24] 支东明, 唐勇, 郑孟林, 等.玛湖凹陷源上砾岩大油区形成分布于勘探实践.新疆石油地质, 2018, 39(1):1-8. ZHI D M, TANG Y, ZHENG M L, et al. Discovery,distribution and exploration practice of large oil provinces of above-source conglomerate in Mahu Sag. Xinjiang Petroleum Geology, 2018, 39(1):1-8.
[25] 雷海艳, 樊顺, 鲜本忠, 等.玛湖凹陷二叠系下乌尔禾组沸石成因及溶蚀机制.岩性油气藏, 2020, 32(5):102-112. LEI H Y, FAN S, XIAN B Z, et al. Genesis and corrosion mechanism of zeolite of lower Urho Formation of Permian in Mahu Sag. Lithologic Reservoirs, 2020, 32(5):102-112.
[26] 李佳思, 付磊, 张金龙, 等.准噶尔盆地乌夏地区中上二叠统碎屑岩成岩作用及次生孔隙演化.岩性油气藏, 2019, 31(6):54-66. LI J S, FU L, ZHANG J L, et al. Diagenesis and secondary pore evolution of Middle Upper Permian clastic rocks in Wuxia area, Junggar Basin. Lithologic Reservoirs, 2019, 31(6):54-66.
[27] 付爽, 庞雷, 许学龙, 等.准噶尔盆地玛湖凹陷下乌尔禾组储层特征及其控制因素.天然气地球科学, 2019, 30(4):468-477. FU S, PANG L, XU X L, et al. The characteristic and their controlling factors on reservoirs in Permian lower Urho Formation in Mahu Sag,Junggar Basin. Natural Gas Geoscience, 2019, 30(4):468-477.
[28] 邹妞妞, 张大权, 钱海涛, 等.准噶尔盆地玛北斜坡区扇三角洲砂砾岩储层主控因素.岩性油气藏, 2016, 28(4):24-33. ZOU N N, ZHANG D Q, QIAN H T, et al. Main controlling factors of glutenite reservoir of fan delta in Mabei slope,Junggar Basin. Lithologic Reservoirs, 2016, 28(4):24-33.
[29] 肖立志, 谢然红, 廖广志.中国复杂油气藏核磁共振测井理论与方法.北京:科学出版社, 2012. XIAO L Z, XIE R H, LIAO G Z. Theory and method of NMR logging for complex oil and gas reservoirs in China. Beijing:Science Press, 2012.
[30] 张妮, 王伟, 王振林, 等.利用核磁共振测井判定低渗透砾岩储集层流体性质:以玛湖凹陷下三叠统百口泉组为例.新疆石油地质, 2018, 39(1):109-113. ZHANG N, WANG W, WANG Z L, et al. Using NMR logging to determine fluid properties in low-permeability conglomerate reservoirs:A case study from the Lower Triassic Baikouquan Formation in Mahu Sag. Xinjiang Petroleum Geology, 2018, 39(1):109-113.
[31] 赵培强, 孙中春, 罗兴平, 等.致密油储层核磁共振测井响应机理研究.地球物理学报, 2016, 59(5):1928-1937. ZHAO P Q, SUN Z C, LUO X P, et al. Study on the response mechanisms of nuclear magnetic resonance(NMR)log in the tight oil reservoirs. Chinese Journal of Geophysics, 2016, 59(5):1928-1937.
[32] 冯程, 石玉江, 郝建飞, 等.低渗透复杂润湿性储集层核磁共振特征.石油勘探与开发, 2017, 44(2):252-257. FENG C, SHI Y J, HAO J F, et al. Nuclear magnetic resonance features of low-permeability reservoirs with complex wettability. Petroleum Exploration and Development, 2017, 44(2):252-257.
[33] 李海波, 郭和坤, 王学武, 等.岩心润湿性对核磁共振可动流体T2截止值的影响.西安石油大学学报(自然科学版), 2015, 30(5):43-47. LI H B, GUO H K, WANG X W, et al. Influence of core wettability on NMR T2 cutoff value of movable fluid. Journal of Xi'an Shiyou University(Natural Science Edition), 2015, 30(5):43-47.
[34] GUAN H, BROUGHAM D, SORBIE K S, et al. Wettability effects in a sandstone reservoir and outcrop cores from NMR relaxation time distributions. Journal of Petroleum Science and Engineering, 2002, 34(1/4):35-54.
[1] 王剑, 周路, 靳军, 向宝力, 胡文瑄, 杨洋, 康逊. 准噶尔盆地玛南地区乌尔禾组砂砾岩优质储层特征[J]. 岩性油气藏, 2021, 33(5): 34-44.
[2] 杜猛, 向勇, 贾宁洪, 吕伟峰, 张景, 张代燕. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏, 2021, 33(5): 120-131.
[3] 李慧莉, 尤东华, 李建交, 谭广辉, 刘士林. 麦盖提斜坡北新1井吐依洛克组角砾岩储层特征[J]. 岩性油气藏, 2021, 33(2): 26-35.
[4] 马永平, 张献文, 朱卡, 王国栋, 潘树新, 黄林军, 张寒, 关新. 玛湖凹陷二叠系上乌尔禾组扇三角洲沉积特征及控制因素[J]. 岩性油气藏, 2021, 33(1): 57-70.
[5] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[6] 符勇, 李忠诚, 万谱, 阙宜娟, 王振军, 吉雨, 黄礼, 罗静兰, 鲍志东. 三角洲前缘滑塌型重力流沉积特征及控制因素——以松辽盆地大安地区青一段为例[J]. 岩性油气藏, 2021, 33(1): 198-208.
[7] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
[8] 雷海艳, 樊顺, 鲜本忠, 孟颖, 杨红霞, 晏奇, 齐婧. 玛湖凹陷二叠系下乌尔禾组沸石成因及溶蚀机制[J]. 岩性油气藏, 2020, 32(5): 102-112.
[9] 张满郎, 孔凡志, 谷江锐, 郭振华, 付晶, 郑国强, 钱品淑. 九龙山气田珍珠冲组砂砾岩储层评价及有利区优选[J]. 岩性油气藏, 2020, 32(3): 1-13.
[10] 徐子煜, 王安, 韩长城, 田继军, 张军生, 刘磊, 张楠. 玛湖地区三叠系克拉玛依组优质砂砾岩储层形成机制[J]. 岩性油气藏, 2020, 32(3): 82-92.
[11] 胡潇, 曲永强, 胡素云, 潘建国, 尹路, 许多年, 滕团余, 王斌. 玛湖凹陷斜坡区浅层油气地质条件及勘探潜力[J]. 岩性油气藏, 2020, 32(2): 67-77.
[12] 曹茜, 王志章, 王野, 张栋梁, 公言杰, 邹开真, 樊太亮. 砂砾岩储层分布非均质性和质量非均质性研究——以克拉玛依油田五2东区克上组为例[J]. 岩性油气藏, 2018, 30(2): 129-138.
[13] 陈志强, 吴思源, 白蓉, 雷刚. 基于流动单元的致密砂岩气储层渗透率测井评价——以川中广安地区须家河组为例[J]. 岩性油气藏, 2017, 29(6): 76-83.
[14] 李友全, 韩秀虹, 阎燕, 张德志, 周志为, 孟凡坤. 低渗透油藏CO2吞吐压力响应曲线分析[J]. 岩性油气藏, 2017, 29(6): 119-127.
[15] 熊连桥, 于福生, 姚根顺, 高崇龙, 王玉. 砂砾岩储层中黄铁矿的油气地质意义——以准噶尔盆地车60井区齐古组为例[J]. 岩性油气藏, 2017, 29(4): 73-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!