岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 34–44.doi: 10.12108/yxyqc.20210504

• 油气地质 • 上一篇    下一篇

准噶尔盆地玛南地区乌尔禾组砂砾岩优质储层特征

王剑1,2,3, 周路1, 靳军2,3, 向宝力2,3, 胡文瑄4, 杨洋2,3, 康逊4   

  1. 1. 西南石油大学 油气藏地质及开发工程国家重点实验室, 成都 610500;
    2. 中国石油新疆油田分公司实验检测研究院, 新疆 克拉玛依 834000;
    3. 新疆砾岩油藏实验室, 新疆 克拉玛依 834000;
    4. 南京大学 地球科学与工程学院, 南京 210023
  • 收稿日期:2021-03-08 修回日期:2021-06-08 出版日期:2021-10-01 发布日期:2021-09-30
  • 第一作者:王剑(1984-),男,硕士,高级工程师,主要从事油气地质、沉积储层方面的研究工作。地址:(834000)新疆克拉玛依准噶尔路29号。Email:wangjian_2605@126.com。
  • 基金资助:
    国家科技重大专项“典型盆地深层油气输导格架建立与油气成藏分析”(2017ZX05008-004-008)资助

Characteristics of high-quality glutenite reservoirs of Urho Formation in Manan area,Junggar Basin

WANG Jian1,2,3, ZHOU Lu1, JIN Jun2,3, XIANG Baoli2,3, HU Wenxuan4, YANG Yang2,3, KANG Xun4   

  1. 1. Stake Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu 610500, China;
    2. Research Institute of Experiment and Detection, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    3. Xinjiang Laboratory of Petroleum Reserve in Conglomerate, Karamay 834000, Xinjiang, China;
    4. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
  • Received:2021-03-08 Revised:2021-06-08 Online:2021-10-01 Published:2021-09-30

摘要: 准噶尔盆地玛南地区乌尔禾组砂砾岩油藏具有规模勘探潜力,是增储上产的有利领域。综合应用岩矿鉴定、SEM,XRD、孔渗分析等手段,系统分析乌尔禾组沉积微相、储集空间类型及物性等储层特征和成岩作用。结果表明,该组沉积于浅水扇三角洲体系,发育了7种沉积微相,其中水下河道砂质细砾岩和砂岩物性较好,是储层发育的优势沉积相带。成岩过程中,压实作用、浊沸石等胶结作用显著破坏了原生粒间孔隙,但浊沸石胶结物以及长石碎屑的溶蚀产生了大量的次生孔隙。最终导致储集空间以次生孔隙为主,其次为剩余粒间孔和微裂缝。优质储层的分布受沉积微相、沸石胶结物类型与含量、地质流体活动强度等因素的影响,其发育具有沉积控制、断裂沟通、流体改造"三位一体"的成因模式。断裂沟通下伏烃源灶和水下河道等优势沉积相带,使酸性含油气流体活动增强,有利于浊沸石等矿物发生溶蚀。靠近断裂的水下河道叠置沉积层为乌尔禾组优质储层。

关键词: 扇三角洲, 砂砾岩储层, 储层成因, 乌尔禾组, 准噶尔盆地

Abstract: The glutenite reservoirs of Urho Formation in Manan area of Junggar Basin has large-scale exploration potential and is a favorable field for increasing reserves and production. The sedimentary microfacies, reservoir space types and reservoir properties of Urho Formation were systematically analyzed by means of rock and mineral identification, SEM, XRD and porosity and permeability analysis. The results show that Urho Formation was deposited in shallow water fan delta and seven sedimentary microfacies were developed, of which underwater channel sandy fine conglomerate and sandstone are the dominant sedimentary facies belt for reservoir development due to their good physical properties. During diagenesis, compaction and laumontite cementation significantly damaged primary intergranular pores, whereas the dissolution of laumontite cement and feldspar debris produced a large number of secondary pores. As a result, secondary pores became the dominant reservoir space, followed by residual intergranular pores and microfractures. Overall, the occurrence of high-quality reservoirs is mainly influenced by sedimentary microfacies, zeolite types and their content, and the activity intensity of acid geofluids charging these strata. The high-quality reservoirs were formed in a genesis model of sedimentary controlling-fault connectingacid fluid transforming. In the favorable microfacies such as subaqueous channel, when it had related to underlying source rocks by faults, the activity of acid hydrocarbon-bearing fluids was strong. The fluids promoted the dissolution of laumontite. The superimposed layers of subaqueous channels near the faults are high-quality reservoir of Urho Formation.

Key words: fan delta, glutenite reservoir, reservoir genesis, Urho Formation, Junggar Basin

中图分类号: 

  • TE122.2
[1] CANT D J, ETHIER V G. Lithology-dependent diagenetic control of reservoir properties of conglomerates, Falher member, Elmworth Field, Alberta. AAPG Bulletin, 1984, 68(8):1044-1054.
[2] BJØRLYKKE K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 2014, 301:1-14.
[3] MAHMIC O, DYPVIK H, HAMMER E. Diagenetic influence on reservoir quality evolution, examples from Triassic conglomerates/arenites in the Edvard Grieg field,Norwegian North Sea. Marine and Petroleum Geology, 2018, 93:247-271.
[4] 史基安, 何周, 丁超, 等. 准噶尔盆地西北缘克百地区二叠系沉积特征及沉积模式.沉积学报, 2010, 28(5):962-968. SHI J A, HE Z, DING C, et al. Sedimentary characteristics and model of Permian system in Ke-Bai area in the northwestern margin of Jungar Basin. Acta Sedimentologica Sinica, 2010, 28(5):962-968.
[5] 宫清顺, 黄革萍, 倪国辉, 等. 准噶尔盆地乌尔禾油田百口泉组冲积扇沉积特征及油气勘探意义. 沉积学报, 2010, 30(6):92-101. GONG Q S, HUANG G P, NI G H, et al. Characteristics of alluvial fan in Baikouquan Formation of Wuerhe oilfield in Junggar Basin and petroleum prospecting significance. Acta Sedimentologica Sinica, 2010, 30(6):92-101.
[6] 张顺存, 邹妞妞, 史基安, 等. 准噶尔盆地玛北地区三叠系百口泉组沉积模式. 石油与天然气地质, 2015, 36(4):641-650. ZHANG S C, ZOU N N, SHI J A, et al. Depositional model of the Triassic Baikouquan Formation in Mabei area of Junggar Basin. Oil & Gas Geology, 2015, 36(4):641-650.
[7] 唐勇, 徐洋, 李亚哲, 等. 玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义. 新疆石油地质, 2018, 39(1):16-22. TANG Y, XU Y, LI Y Z, et al. Sedimentation model and exploration significance of large-scaled shallow retrogradation fan delta in Mahu Sag. Xinjiang Petroleum Geology, 2018, 39(1):16-22.
[8] 靳军, 康逊, 胡文瑄, 等. 准噶尔盆地玛湖凹陷西斜坡百口泉组砂砾岩储层成岩作用及对储集性能的影响. 石油与天然气地质, 2017, 38(2):323-333. JIN J, KANG X, HU W X, et al. Diagenesis and its influence on coarse clastic reservoirs in the Baikouquan Formation of western slope of the Mahu Depression, Junngar Basin. Oil & Gas Geology, 2017, 38(2):323-333.
[9] 康逊, 胡文瑄, 曹剑, 等. 钾长石和钠长石差异溶蚀与含烃类流体的关系:以准噶尔盆地艾湖油田百口泉组为例. 石油学报, 2016, 37(11):1381-1393. KANG X, HU W X, CAO J, et al. Relationship between hydrocarbon bearing fluid and the differential corrosion of potash feldspar and albite:A case study of Baikouquan Formation in Aihu oilfield, Junggar Basin. Acta Petrolei Sinica, 2016, 37(11):1381-1393.
[10] KANG X, HU W X, CAO J, et al. Controls on reservoir quality in fan -deltaic conglomerates:Insight from the Lower Triassic Baikouquan Formation, Junggar Basin, China. Marine and Petroleum Geology, 2019, 103:55-75.
[11] 匡立春, 唐勇, 雷德文, 等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组扇控大面积岩性油藏勘探实践. 中国石油勘探, 2014, 19(6):14-23. KUANG L C, TANG Y, LEI D W, et al. Exploration of fancontrolled large-area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu Depression in Junggar Basin. China Petroleum Exploration, 2014, 19(6):14-23.
[12] 支东明, 唐勇, 郑孟林, 等. 玛湖凹陷源上砾岩大油区形成分布与勘探实践. 新疆石油地质, 2018, 39(1):1-8. ZHI D M, TANG Y, ZHENG M L, et al. Discovery, distribution, and exploration practice of large oil provinces of abovesource conglomerate in Mahu Sag. Xinjiang Petroleum Geology, 2018, 39(1):1-8.
[13] TAYLOR T R, GILES M R, HATHON L A, et al. Sandstone diagenesis and reservoir quality prediction:Models, myths, and reality. AAPG Bulletin, 2010, 94(8):1093-1132.
[14] 庞德新. 砂砾岩储层成因差异及其对储集物性的控制效应:以玛湖凹陷玛2井区下乌尔禾组为例. 岩性油气藏, 2015, 27(5):149-154. PANG D X. Sedimentary genesis of sand-conglomerate reservoir and its control effect on reservoir properties:A case study of the lower Urho Formation in Ma 2 well block of Mahu Depression. Lithologic Reservoirs, 2015, 27(5):149-154.
[15] 张有平, 盛世锋, 高祥录. 玛湖凹陷玛2井区下乌尔禾组扇三角洲沉积及有利储层分布. 岩性油气藏, 2015, 27(5):204-209. ZHANG Y P, SHENG S F, GAO X L. Fan delta sedimentation and favorable reservoir distribution of the lower Urho Formation in Ma 2 well block of Mahu Depression. Lithologic Reservoirs, 2015, 27(5):204-209.
[16] 马永平, 张献文, 朱卡, 等. 玛湖凹陷上乌尔禾组扇三角洲沉积特征及控制因素. 岩性油气藏, 2021, 33(1):1-13. MA Y P, ZHANG X W, ZHU K, et al. Sedimentary characteristics and controlling factors of fan-delta of Upper Urho Formation in Mahu Sag. Lithologic Reservoirs, 2021, 33(1):1-13.
[17] 汪孝敬, 李维锋,董宏,等. 砂砾岩岩相成因分类及扇三角洲沉积特征:以准噶尔盆地西北缘克拉玛依油田五八区上乌尔禾组为例. 新疆石油地质, 2017, 38(5):537-543. WANG X J, LI W F, DONG H, et al. Genetic classification of sandy conglomerate facies and sedimentary characteristics of fan delta:A case study from Upper Wuerhe Formation in district Wuba in northwestern margin of Junggar Basin. Xinjiang Petroleum Geology, 2017, 38(5):537-543.
[18] 邱楠生, 杨海波, 王绪龙. 准噶尔盆地构造-热演化特征. 地质科学, 2002, 37(4):423-429. QIU N S, YANG H B, WANG X L. Tectonic-thermal evolution in the Junggar Basin. Chinese Journal of Geology, 2002, 37(4):423-429.
[19] 蔡忠贤, 陈发景, 贾振远. 准噶尔盆地的类型和构造演化. 地学前缘, 2000, 7(4):431-440. CAI Z X, CHEN F J, JIA Z Y. Types and tectonic evolution of Junggar Basin. Earth Science Frontier, 2000, 7(4):431-440.
[20] HU W X, KANG X, CAO J, et al. Thermochemical oxidation of methane induced by high-valence metal oxides in a sedimentary basin. Nature Communications, 2018, 32(3):188-200.
[21] 贾承造, 宋岩, 魏国齐, 等. 中国中西部前陆盆地的地质特征及油气聚集. 地学前缘, 2005, 12(3):3-13. JIA C Z, SONG Y, WEI G Q, et al. Geological features and petroleum accumulation in the foreland basins in central and western China. Earth Science Frontiers, 2005, 12(3):3-13.
[22] CAO J, ZHANG Y J, HU W X, et al. The Permian hybrid petroleum system in the northwestern margin of the Junggar Basin, northwest China. Marine and Petroleum Geology, 2005, 22(3):331-349.
[23] TAO K Y, CAO J, WANG Y C, et al. Geochemistry and origin of natural gas in the petroliferous Mahu Sag,northwestern Junggar Basin, NW China:Carboniferous marine and Permian lacustrine gas systems. Organic Geochemistry, 2016, 100(5):62-79.
[24] 朱世发, 朱筱敏, 王绪龙, 等. 准噶尔盆地西北缘二叠系沸石矿物成岩作用及对油气的意义. 中国科学:地球科学, 2011, 41(11):1602-1612. ZHU S F, ZHU X M, WANG X L, et al. Zeolite diagenesis and its control on petroleum reservoir quality of Permian in northwestern margin of Junggar Basin, China. Science China Earth Sciences, 2011, 41(11):1602-1612.
[25] 余兴, 尤新才, 白雨, 等.玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用. 岩性油气藏, 2021, 33(1):81-89. YU X, YOU X C, BAI Y, et al. Identification of faults in the south slope of Mahu Sag and its control on hydrocarbon accumulation. Lithologic Reservoirs, 2021, 33(1):81-89.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[3] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[4] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[5] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[6] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[7] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[8] 周洪锋, 吴海红, 杨禹希, 向红英, 高吉宏, 贺昊文, 赵旭. 二连盆地巴音都兰凹陷B51井区白垩系阿四段扇三角洲前缘沉积特征[J]. 岩性油气藏, 2024, 36(4): 85-97.
[9] 田亚, 李军辉, 陈方举, 李跃, 刘华晔, 邹越, 张晓扬. 海拉尔盆地中部断陷带下白垩统南屯组致密储层特征及有利区预测[J]. 岩性油气藏, 2024, 36(4): 136-146.
[10] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[11] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[12] 王金铎, 曾治平, 徐冰冰, 李超, 刘德志, 范婕, 李松涛, 张增宝. 准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型[J]. 岩性油气藏, 2024, 36(1): 23-31.
[13] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[14] 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68.
[15] 李二庭, 米巨磊, 张宇, 潘越扬, 迪丽达尔·肉孜, 王海静, 高秀伟. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征[J]. 岩性油气藏, 2024, 36(1): 88-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 耿燕飞,张春生,韩校锋,杨大超. 安岳—合川地区低阻气层形成机理研究[J]. 岩性油气藏, 2011, 23(3): 70 -74 .