岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 148–154.doi: 10.12108/yxyqc.20210514

• 油气田开发 • 上一篇    下一篇

基于页岩孔隙网络模型的油水两相流动模拟

王静怡, 周志军, 魏华彬, 崔春雪   

  1. 东北石油大学 石油工程学院, 黑龙江 大庆 163318
  • 收稿日期:2020-12-28 修回日期:2021-03-15 出版日期:2021-10-01 发布日期:2021-09-30
  • 第一作者:王静怡(1989-),女,东北石油大学在读博士研究生,研究方向为页岩油微观流动机理。地址:(163318)黑龙江省大庆市高新开发区学府街99号。Email:525354060@qq.com
  • 通信作者: 周志军(1966-),男,博士,教授,主要从事油藏数值模拟方面的教学与工作。Email:sygc423@163.com。
  • 基金资助:
    中国奖学金委员会“国家建设高水平大学公派研究生项目”(编号:201708230227)和东北石油大学“国家基金”基金项目“济阳坳陷泥页岩微观孔隙结构特征及流动机制研究”(编号:2018GPYB-02)联合资助

Simulation of oil-water two-phase flow based on shale pore network model

WANG Jingyi, ZHOU Zhijun, WEI Huabin, CUI Chunxue   

  1. School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Received:2020-12-28 Revised:2021-03-15 Online:2021-10-01 Published:2021-09-30

摘要: 为了直观准确地认识页岩油流动特征以及微观剩余油的形成机理,以济阳坳陷沙河街组泥页岩储层为研究对象,利用聚焦离子束扫描电镜系统扫描成像,构建了三维数字岩心并提取了孔隙网络模型,分析了孔隙结构参数,将三维孔隙网络模型的物性参数与室内实验物性数据进行了对比,验证了该模型的准确性,在孔隙网络模型的基础上,分析了样品的孔喉结构特征,并结合Navier-Stokes方程建立了油水两相渗流数学模型。利用有限元方法进行求解,进行油水两相微观流动模拟。结果表明:泥页岩样品具有孔隙结构复杂、孔隙配位数低、连通性差等特点,页岩油储集空间和流动空间主要为纳米级孔隙。流体在孔隙网络模型中流动情况复杂,随驱替压力的增加采出程度提高;压力越大,越易出现指进现象,使局部剩余油形成。局部狭窄喉道的尺寸是限制流体流动的关键因素。当壁面润湿性为水湿时,驱油效果最好,模型壁面为油湿时,驱油效果最差,中性润湿时,不易形成剩余油。该研究成果对于微观条件下页岩油的油水两相流动研究具有指导意义。

关键词: 页岩油, 孔隙网络模型, 孔隙结构, 两相流动, 采出程度, 剩余油

Abstract: In order to understand the flow characteristics of shale oil and the formation mechanism of microscopic remaining oil, the shale reservoir of the Shahejie Formation in Jiyang Depression was taken intuitively and accurately as the research object, and the focused ion beam scanning electron microscope system was used for scanning imaging. A three-dimensional digital core was constructed and a pore network model was extracted. The pore structure parameters were analyzed, and then the physical properties of the three-dimensional pore network model were compared with the laboratory experimental physical data to verify the accuracy of the model. On the basis of the pore network model, the pore throat structure characteristics of the samples were analyzed, and a mathematical model of oil-water two-phase seepage flow was established in combination with the Navier-Stokes equation. The finite element method was used to solve model, and the oil-water two-phase microscopic flow simulation was carried out. The results show that the shale samples have the characteristics of complex pore structure, low pore coordination number and poor connectivity. The reservoir space and flow space of shale oil are mainly nano-scale pores. The fluid flow in the pore network model is complex, and the recovery degree increases with the increase of displacement pressure. The higher the pressure is, the easier the fingering phenomenon occurs, and the local remaining oil will be formed. The size of local narrow throat is the key factor to limit the flow of fluid. When the wettability of the wall is water wet, the displacement effect is the best, while the model is oil wet, the displacement effect is the worst, and the remaining oil is not easy to form when the neutral wetting is in. The results of this study are of great significance for the study of oil-water two-phase flow of shale oil under micro conditions. The size of the locally narrowed throat is a key factor restricting fluid flow. When the wall wettability is water-wet, the oil displacement effect is the best, while the model wall is oil-wet, the oil displacement effect is the worst, and the remaining oil is not easy to form When the wall is neutrally wet. The research results have guiding significance for the study of oil-water two-phase flow of shale oil under microscopic conditions.

Key words: shale oil, pore network model, pore structure, two-phase flow, recovery degree, remaining oil

中图分类号: 

  • TE327
[1] 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值. 岩石学报, 2011, 27(6):1857-1864. ZOU C N, ZHU R K, BAI B, et al. The first discovery of nanopores in oil and gas reservoirs in China and its scientific value. Acta Petrologica Sinica, 2011, 27(6):1857-1864.
[2] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策. 石油勘探与开发, 2013, 40(1):14-26. ZOU C N, YANG Z, CUI J W, et al. Formation mechanism, geological characteristics and development countermeasures of shale oil. Petroleum Exploration and Development, 2013, 40(1):14-26.
[3] 刘毅, 陆正元, 戚明辉, 等.渤海湾盆地沾化凹陷沙河街组页岩油微观储集特征. 石油实验地质, 2017, 39(2):180-185. LIU Y, LU Z Y, QI M H, et al. Microscopic characteristics of shale oil reservoirs in Shahejie Formation in Zhanhua Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 2017, 39(2):180-185.
[4] 许长福, 刘红现, 钱根宝, 等. 克拉玛依砾岩储集层微观水驱油机理. 石油勘探与开发, 2011, 38(6):725-732. XU C F, LIU H X, QIAN G B, et al. Micro water flooding mechanism of Karamay conglomerate reservoir. Petroleum Exploration and Development, 2011, 38(6):725-732.
[5] 郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述. 岩性油气藏, 2013, 25(5):123-128. HAO L W, WANG Q, TANG J. Research method and theory of reservoir rock micro pore structure. Lithologic Reservoirs, 2013, 25(5):123-128.
[6] ZHOU S W, YAN G, XUE H Q, et al. 2D and 3D nanopore characterization of gas shale in Longmaxi Formation based on FIB-SEM. Marine and Petroleum Geology, 2016, 73:174-180.
[7] 陶军, 姚军, 赵秀才. 利用IRIS Explorer数据可视化软件进行孔隙级数字岩心可视化研究. 石油天然气学报, 2006, 28(5):51-53. TAO J, YAO J, ZHAO X C. Research on pore-level digital core visualization using IRIS Explorer data visualization software. Journal of Oil and Gas Technology, 2006, 28(5):51-53.
[8] BLUNT M. Flow in porous media-pore-network models and multiphase flow. Current Opinion in Colloids and Interface Science, 2001, 6(3):197-207.
[9] FATT I. Capillarity-permeability:The network model of porous Media -I. Capillary pressure characteristics. AIME 207, 1957:144-159.
[10] BLUNT M J, JACKSON M D, PIRI M, et al. Detailed physics, predictive capabilities and macroscopic consequences for porenetwork models of multiphase flow. Advances in Water Resources, 2002, 25(8/12):1069-1089.
[11] WANG H, WU W, CHEN T, et al. Pore structure and fractal analysis of shale oil reservoirs:A case study of the Paleogene Shahejie Formation in the Dongying Depression, Bohai Bay, China. Journal of Petroleum Science and Engineering, 2019, 177:711-723.
[12] 高亚军, 姜汉桥, 王硕亮, 等. 基于Level set方法的微观水驱油模拟分析. 中国海上油气, 2016, 28(6):59-65. GAO Y J, JIANG H Q, WANG S L, et al. Simulation analysis of microscopic water-oil displacement based on Level set method. China Offshore Oil and Gas, 2016, 28(6):59-65.
[13] 冯其红, 赵蕴昌, 王森, 等. 基于相场方法的孔隙尺度油水两相流体流动模拟. 计算物理, 2020, 37(4):439-447. FENG Q H, ZHAO Y C, WANG S, et al. Pore scale oil-water two-phase flow simulation based on phase field method. Computational Physics, 2020, 37(4):439-447.
[14] 俞启泰. 关于剩余油研究的探讨. 石油勘探与开发, 1997, 24(2):46-50. YU Q T. Discussion on remaining oil research. Petroleum Exploration and Development, 1997, 24(2):46-50.
[15] 方辉煌, 桑树勋, 刘世奇, 等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法:以沁水盆地伯方3号煤为例. 煤田地质与勘探, 2018, 46(5):167-174. FANG H H, SANG S X, LIU S Q, et al. Digital petrophysical analysis method of coal petrography based on micro focus CT technology:A case study of Bofang No.3 Coal in Qinshui Basin. Coalfield Geology and Exploration, 2018, 46(5):167-174.
[16] DONG H. Micro-CT imaging and pore network extraction. London:Imperial College, 2007.
[17] 王春生, 刘洋, 孙启冀, 等. 基于数字岩心技术研究低渗砂岩渗流特征. 物探化探计算技术, 2017, 39(4):573-578. WANG C S, LIU Y, SUN Q J, et al. Study on seepage characteristics of low permeability sandstone based on digital core technology. Geophysical and Geochemical Calculation Technology, 2017, 39(4):573-578.
[18] 任晓霞, 李爱芬, 王永政, 等. 致密砂岩储层孔隙结构及其对渗流的影响:以鄂尔多斯盆地马岭油田长8储层为例. 石油与天然气地质, 2015, 36(5):774-779. REN X X, LI A F, WANG Y Z, et al. Pore structure of tight sandstone reservoir and its influence on seepage:Taking the Chang 8 reservoir in Maling Oilfield in Ordos Basin as an example. Oil & Gas Geology, 2015, 36(5):774-779.
[19] 王平全, 陶鹏, 刘建仪, 等.基于数字岩心的低渗透率储层微观渗流和电传导数值模拟.测井技术, 2017, 41(4):389-393. WANG P Q, TAO P, LIU J Y, et al. Numerical simulation of micro seepage and electrical conductivity in low permeability reservoir based on digital core. Logging Technology, 2017, 41(4):389-393.
[20] 吴丰, 姚聪, 丛林林, 等. 岩石气水两相渗流的玻璃刻蚀驱替实验与有限元数值模拟对比. 岩性油气藏, 2019, 31(4):121-132. WU F, YAO C, CONG L L, et al. Comparison of glass etching displacement experiment and finite element numerical simulation for gas-water two-phase seepage in rocks. Lithologic Reservoirs, 2019, 31(4):121-132.
[21] 宋明明, 韩淑乔, 董云鹏, 等. 致密砂岩储层微观水驱油效率及其主控因素. 岩性油气藏, 2020, 32(1):135-143. SONG M M, HAN S Q, DONG Y P, et al. Microscopic water flooding efficiency and main controlling factors of tight sand stone reservoir. Lithologic Reservoirs, 2020, 32(1):135-143.
[22] 赵丁丁, 孙卫, 杜堃, 等. 特低-超低渗透砂岩储层微观水驱油特征及影响因素:以鄂尔多斯盆地马岭油田长81储层为例. 地质科技情报, 2019, 38(3):157-164. ZHAO D D, SUN W, DU K, et al. Micro water flooding characteristics and influencing factors of ultra-low permeability sandstone reservoir:A case study of Chang 81 reservoir in Maling oilfield, Ordos Basin. Geological Science and Technology Information, 2019, 38(3):157-164.
[23] 何文祥, 杨亿前, 马超亚. 特低渗透率储层水驱油规律实验研究. 岩性油气藏, 2010, 22(4):109-115. HE W X, YANG Y Q, MA C Y. Experimental study on waterflooding in ultra-low permeability reservoirs. Lithologic Reservoirs, 2010, 22(4):109-115.
[1] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[2] 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168.
[3] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[4] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[5] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[6] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[7] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[8] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[9] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[10] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[11] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[12] 邓远, 陈轩, 覃建华, 李映艳, 何吉祥, 陶鑫, 尹太举, 高阳. 吉木萨尔凹陷二叠系芦草沟组一段沉积期古地貌特征及有利储层分布[J]. 岩性油气藏, 2024, 36(1): 136-144.
[13] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[14] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新生界断层精细表征及地质意义[J]. 岩性油气藏, 2023, 35(4): 50-60.
[15] 刘海磊, 朱永才, 刘龙松, 尹鹤, 王学勇, 杜小弟. 准噶尔盆地阜康断裂带上盘二叠系芦草沟组页岩油地质特征及勘探潜力[J]. 岩性油气藏, 2023, 35(4): 90-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 耿燕飞,张春生,韩校锋,杨大超. 安岳—合川地区低阻气层形成机理研究[J]. 岩性油气藏, 2011, 23(3): 70 -74 .