岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 148–154.doi: 10.12108/yxyqc.20210514

• 油气田开发 • 上一篇    下一篇

基于页岩孔隙网络模型的油水两相流动模拟

王静怡, 周志军, 魏华彬, 崔春雪   

  1. 东北石油大学 石油工程学院, 黑龙江 大庆 163318
  • 收稿日期:2020-12-28 修回日期:2021-03-15 出版日期:2021-10-01 发布日期:2021-09-30
  • 通讯作者: 周志军(1966-),男,博士,教授,主要从事油藏数值模拟方面的教学与工作。Email:sygc423@163.com。 E-mail:sygc423@163.com
  • 作者简介:王静怡(1989-),女,东北石油大学在读博士研究生,研究方向为页岩油微观流动机理。地址:(163318)黑龙江省大庆市高新开发区学府街99号。Email:525354060@qq.com
  • 基金资助:
    中国奖学金委员会“国家建设高水平大学公派研究生项目”(编号:201708230227)和东北石油大学“国家基金”基金项目“济阳坳陷泥页岩微观孔隙结构特征及流动机制研究”(编号:2018GPYB-02)联合资助

Simulation of oil-water two-phase flow based on shale pore network model

WANG Jingyi, ZHOU Zhijun, WEI Huabin, CUI Chunxue   

  1. School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Received:2020-12-28 Revised:2021-03-15 Online:2021-10-01 Published:2021-09-30

摘要: 为了直观准确地认识页岩油流动特征以及微观剩余油的形成机理,以济阳坳陷沙河街组泥页岩储层为研究对象,利用聚焦离子束扫描电镜系统扫描成像,构建了三维数字岩心并提取了孔隙网络模型,分析了孔隙结构参数,将三维孔隙网络模型的物性参数与室内实验物性数据进行了对比,验证了该模型的准确性,在孔隙网络模型的基础上,分析了样品的孔喉结构特征,并结合Navier-Stokes方程建立了油水两相渗流数学模型。利用有限元方法进行求解,进行油水两相微观流动模拟。结果表明:泥页岩样品具有孔隙结构复杂、孔隙配位数低、连通性差等特点,页岩油储集空间和流动空间主要为纳米级孔隙。流体在孔隙网络模型中流动情况复杂,随驱替压力的增加采出程度提高;压力越大,越易出现指进现象,使局部剩余油形成。局部狭窄喉道的尺寸是限制流体流动的关键因素。当壁面润湿性为水湿时,驱油效果最好,模型壁面为油湿时,驱油效果最差,中性润湿时,不易形成剩余油。该研究成果对于微观条件下页岩油的油水两相流动研究具有指导意义。

关键词: 页岩油, 孔隙网络模型, 孔隙结构, 两相流动, 采出程度, 剩余油

Abstract: In order to understand the flow characteristics of shale oil and the formation mechanism of microscopic remaining oil, the shale reservoir of the Shahejie Formation in Jiyang Depression was taken intuitively and accurately as the research object, and the focused ion beam scanning electron microscope system was used for scanning imaging. A three-dimensional digital core was constructed and a pore network model was extracted. The pore structure parameters were analyzed, and then the physical properties of the three-dimensional pore network model were compared with the laboratory experimental physical data to verify the accuracy of the model. On the basis of the pore network model, the pore throat structure characteristics of the samples were analyzed, and a mathematical model of oil-water two-phase seepage flow was established in combination with the Navier-Stokes equation. The finite element method was used to solve model, and the oil-water two-phase microscopic flow simulation was carried out. The results show that the shale samples have the characteristics of complex pore structure, low pore coordination number and poor connectivity. The reservoir space and flow space of shale oil are mainly nano-scale pores. The fluid flow in the pore network model is complex, and the recovery degree increases with the increase of displacement pressure. The higher the pressure is, the easier the fingering phenomenon occurs, and the local remaining oil will be formed. The size of local narrow throat is the key factor to limit the flow of fluid. When the wettability of the wall is water wet, the displacement effect is the best, while the model is oil wet, the displacement effect is the worst, and the remaining oil is not easy to form when the neutral wetting is in. The results of this study are of great significance for the study of oil-water two-phase flow of shale oil under micro conditions. The size of the locally narrowed throat is a key factor restricting fluid flow. When the wall wettability is water-wet, the oil displacement effect is the best, while the model wall is oil-wet, the oil displacement effect is the worst, and the remaining oil is not easy to form When the wall is neutrally wet. The research results have guiding significance for the study of oil-water two-phase flow of shale oil under microscopic conditions.

Key words: shale oil, pore network model, pore structure, two-phase flow, recovery degree, remaining oil

中图分类号: 

  • TE327
[1] 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值. 岩石学报, 2011, 27(6):1857-1864. ZOU C N, ZHU R K, BAI B, et al. The first discovery of nanopores in oil and gas reservoirs in China and its scientific value. Acta Petrologica Sinica, 2011, 27(6):1857-1864.
[2] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策. 石油勘探与开发, 2013, 40(1):14-26. ZOU C N, YANG Z, CUI J W, et al. Formation mechanism, geological characteristics and development countermeasures of shale oil. Petroleum Exploration and Development, 2013, 40(1):14-26.
[3] 刘毅, 陆正元, 戚明辉, 等.渤海湾盆地沾化凹陷沙河街组页岩油微观储集特征. 石油实验地质, 2017, 39(2):180-185. LIU Y, LU Z Y, QI M H, et al. Microscopic characteristics of shale oil reservoirs in Shahejie Formation in Zhanhua Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 2017, 39(2):180-185.
[4] 许长福, 刘红现, 钱根宝, 等. 克拉玛依砾岩储集层微观水驱油机理. 石油勘探与开发, 2011, 38(6):725-732. XU C F, LIU H X, QIAN G B, et al. Micro water flooding mechanism of Karamay conglomerate reservoir. Petroleum Exploration and Development, 2011, 38(6):725-732.
[5] 郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述. 岩性油气藏, 2013, 25(5):123-128. HAO L W, WANG Q, TANG J. Research method and theory of reservoir rock micro pore structure. Lithologic Reservoirs, 2013, 25(5):123-128.
[6] ZHOU S W, YAN G, XUE H Q, et al. 2D and 3D nanopore characterization of gas shale in Longmaxi Formation based on FIB-SEM. Marine and Petroleum Geology, 2016, 73:174-180.
[7] 陶军, 姚军, 赵秀才. 利用IRIS Explorer数据可视化软件进行孔隙级数字岩心可视化研究. 石油天然气学报, 2006, 28(5):51-53. TAO J, YAO J, ZHAO X C. Research on pore-level digital core visualization using IRIS Explorer data visualization software. Journal of Oil and Gas Technology, 2006, 28(5):51-53.
[8] BLUNT M. Flow in porous media-pore-network models and multiphase flow. Current Opinion in Colloids and Interface Science, 2001, 6(3):197-207.
[9] FATT I. Capillarity-permeability:The network model of porous Media -I. Capillary pressure characteristics. AIME 207, 1957:144-159.
[10] BLUNT M J, JACKSON M D, PIRI M, et al. Detailed physics, predictive capabilities and macroscopic consequences for porenetwork models of multiphase flow. Advances in Water Resources, 2002, 25(8/12):1069-1089.
[11] WANG H, WU W, CHEN T, et al. Pore structure and fractal analysis of shale oil reservoirs:A case study of the Paleogene Shahejie Formation in the Dongying Depression, Bohai Bay, China. Journal of Petroleum Science and Engineering, 2019, 177:711-723.
[12] 高亚军, 姜汉桥, 王硕亮, 等. 基于Level set方法的微观水驱油模拟分析. 中国海上油气, 2016, 28(6):59-65. GAO Y J, JIANG H Q, WANG S L, et al. Simulation analysis of microscopic water-oil displacement based on Level set method. China Offshore Oil and Gas, 2016, 28(6):59-65.
[13] 冯其红, 赵蕴昌, 王森, 等. 基于相场方法的孔隙尺度油水两相流体流动模拟. 计算物理, 2020, 37(4):439-447. FENG Q H, ZHAO Y C, WANG S, et al. Pore scale oil-water two-phase flow simulation based on phase field method. Computational Physics, 2020, 37(4):439-447.
[14] 俞启泰. 关于剩余油研究的探讨. 石油勘探与开发, 1997, 24(2):46-50. YU Q T. Discussion on remaining oil research. Petroleum Exploration and Development, 1997, 24(2):46-50.
[15] 方辉煌, 桑树勋, 刘世奇, 等. 基于微米焦点CT技术的煤岩数字岩石物理分析方法:以沁水盆地伯方3号煤为例. 煤田地质与勘探, 2018, 46(5):167-174. FANG H H, SANG S X, LIU S Q, et al. Digital petrophysical analysis method of coal petrography based on micro focus CT technology:A case study of Bofang No.3 Coal in Qinshui Basin. Coalfield Geology and Exploration, 2018, 46(5):167-174.
[16] DONG H. Micro-CT imaging and pore network extraction. London:Imperial College, 2007.
[17] 王春生, 刘洋, 孙启冀, 等. 基于数字岩心技术研究低渗砂岩渗流特征. 物探化探计算技术, 2017, 39(4):573-578. WANG C S, LIU Y, SUN Q J, et al. Study on seepage characteristics of low permeability sandstone based on digital core technology. Geophysical and Geochemical Calculation Technology, 2017, 39(4):573-578.
[18] 任晓霞, 李爱芬, 王永政, 等. 致密砂岩储层孔隙结构及其对渗流的影响:以鄂尔多斯盆地马岭油田长8储层为例. 石油与天然气地质, 2015, 36(5):774-779. REN X X, LI A F, WANG Y Z, et al. Pore structure of tight sandstone reservoir and its influence on seepage:Taking the Chang 8 reservoir in Maling Oilfield in Ordos Basin as an example. Oil & Gas Geology, 2015, 36(5):774-779.
[19] 王平全, 陶鹏, 刘建仪, 等.基于数字岩心的低渗透率储层微观渗流和电传导数值模拟.测井技术, 2017, 41(4):389-393. WANG P Q, TAO P, LIU J Y, et al. Numerical simulation of micro seepage and electrical conductivity in low permeability reservoir based on digital core. Logging Technology, 2017, 41(4):389-393.
[20] 吴丰, 姚聪, 丛林林, 等. 岩石气水两相渗流的玻璃刻蚀驱替实验与有限元数值模拟对比. 岩性油气藏, 2019, 31(4):121-132. WU F, YAO C, CONG L L, et al. Comparison of glass etching displacement experiment and finite element numerical simulation for gas-water two-phase seepage in rocks. Lithologic Reservoirs, 2019, 31(4):121-132.
[21] 宋明明, 韩淑乔, 董云鹏, 等. 致密砂岩储层微观水驱油效率及其主控因素. 岩性油气藏, 2020, 32(1):135-143. SONG M M, HAN S Q, DONG Y P, et al. Microscopic water flooding efficiency and main controlling factors of tight sand stone reservoir. Lithologic Reservoirs, 2020, 32(1):135-143.
[22] 赵丁丁, 孙卫, 杜堃, 等. 特低-超低渗透砂岩储层微观水驱油特征及影响因素:以鄂尔多斯盆地马岭油田长81储层为例. 地质科技情报, 2019, 38(3):157-164. ZHAO D D, SUN W, DU K, et al. Micro water flooding characteristics and influencing factors of ultra-low permeability sandstone reservoir:A case study of Chang 81 reservoir in Maling oilfield, Ordos Basin. Geological Science and Technology Information, 2019, 38(3):157-164.
[23] 何文祥, 杨亿前, 马超亚. 特低渗透率储层水驱油规律实验研究. 岩性油气藏, 2010, 22(4):109-115. HE W X, YANG Y Q, MA C Y. Experimental study on waterflooding in ultra-low permeability reservoirs. Lithologic Reservoirs, 2010, 22(4):109-115.
[1] 杜猛, 向勇, 贾宁洪, 吕伟峰, 张景, 张代燕. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏, 2021, 33(5): 120-131.
[2] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[3] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[4] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[5] 王立辉, 夏惠芬, 韩培慧, 曹瑞波, 孙先达, 张思琪. 剩余油分布的微观特征及其可动用程度的定量表征[J]. 岩性油气藏, 2021, 33(2): 147-154.
[6] 杜金玲, 林鹤, 纪拥军, 江洪, 许文莉, 伍顺伟. 地震与微地震融合技术在页岩油压后评估中的应用[J]. 岩性油气藏, 2021, 33(2): 127-134.
[7] 邓猛, 邵英博, 赵军寿, 廖辉, 邓琪. 渤海A油田明化镇组下段河-坝砂体储层构型及剩余油分布[J]. 岩性油气藏, 2020, 32(6): 154-163.
[8] 刘博, 徐刚, 纪拥军, 魏路路, 梁雪莉, 何金玉. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32(6): 172-180.
[9] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
[10] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[11] 张道伟, 薛建勤, 伍坤宇, 陈晓冬, 王牧, 张庆辉, 郭宁. 柴达木盆地英西地区页岩油储层特征及有利区优选[J]. 岩性油气藏, 2020, 32(4): 1-11.
[12] 陈明江, 程亮, 陆涛. Ahdeb油田Khasib油藏孔隙结构及其对注水开发的影响[J]. 岩性油气藏, 2020, 32(3): 133-143.
[13] 宋明明, 韩淑乔, 董云鹏, 陈江, 万涛. 致密砂岩储层微观水驱油效率及其主控因素[J]. 岩性油气藏, 2020, 32(1): 135-143.
[14] 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60.
[15] 贾红兵, 赵辉, 包志晶, 赵光杰, 毛伟, 李亚光. 水驱开发效果评价新方法及其矿场应用[J]. 岩性油气藏, 2019, 31(5): 101-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!