岩性油气藏 ›› 2021, Vol. 33 ›› Issue (2): 26–35.doi: 10.12108/yxyqc.20210204

• 油气地质 • 上一篇    下一篇

麦盖提斜坡北新1井吐依洛克组角砾岩储层特征

李慧莉1, 尤东华2, 李建交1, 谭广辉3, 刘士林4   

  1. 1. 中国石化石油勘探开发研究院, 北京 100083;
    2. 中国石化石油勘探开发研究院 无锡石油地质研究所, 江苏 无锡 214126;
    3. 中国石化西北油田分公司 勘探开发研究院, 乌鲁木齐 830011;
    4. 中国石化油田勘探开发事业部, 北京 100728
  • 收稿日期:2020-09-06 修回日期:2020-10-13 出版日期:2021-04-01 发布日期:2021-03-31
  • 第一作者:李慧莉(1972—),女,博士,高级工程师,主要从事石油地质综合研究工作。地址:(100083)北京市海淀区学院路31号中国石化石油勘探开发研究院。Email:lihl.syky@sinopec.com。
  • 基金资助:
    中国石化科技部项目“巴麦地区油气成藏条件与勘探方向研究”(编号:P15090)和中国科学院战略性先导科技专项(A类) “深层油气勘探目标评价与优选” (编号:XDA14010406)联合资助

Characteristics of breccia reservoir of Tuylock Formation of well Beixin-1 in Markit Slope of Tarim Basin

LI Huili1, YOU Donghua2, LI Jianjiao1, TAN Guanghui3, LIU Shilin4   

  1. 1. Research Institute of Petroleum Exploration & Production, Sinopec, Beijing 100083, China;
    2. Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration & Production, Sinopec, Wuxi 214126, Jiangsu, China;
    3. Research Institute of Exploration and Development, Sinopec Northwest Oilfield Company, Urumqi 830011, China;
    4. Department of Oilfield Exploration & Development, Sinopec, Beijing 100728, China
  • Received:2020-09-06 Revised:2020-10-13 Online:2021-04-01 Published:2021-03-31

摘要: 塔里木盆地麦盖提斜坡北新1井首次在古近系阿尔塔什组膏盐岩之下揭示了一套吐依洛克组白云质角砾岩和白云岩储层,并且获得油气发现。为明确储层发育特征,利用测试产层段连续取心获得的实物资料,开展储层物性、储集空间、成岩作用及成因研究。结果表明:白云质角砾岩储层具有良好的储层物性;裂缝和溶蚀孔洞主要分布在角砾状粉晶云岩与粉晶云岩段,是其主要的储集空间。准同生期和成岩早期的膏溶作用和喜山期的构造破裂作用是主要的建设性成岩作用。白云质角砾岩的原始沉积环境为局限潮坪或泻湖相,准同生期发生普遍的膏溶作用和喜山期遭受构造破裂作用是白云质角砾岩储层的两大建设性作用。

关键词: 储层特征, 角砾岩储层, 膏溶作用, 构造破裂, 吐依洛克组, 麦盖提斜坡, 塔里木盆地

Abstract: A set of dolomite and dolomitic breccia reservoir covered by the gypsum bed of Aertashi Formation was firstly drilled in well Beixin-1 in Markit Slope of Tarim Basin,which obtained oil and gas discovery. In order to define reservoir characteristics,studies on reservoir physical properties,reservoir space,diagenesis and genesis were carried out by using the data obtained from continuous coring of the test production section. The results show that the dolomitic breccia reservoir has good reservoir physical properties,and fractures, dissolved pores and cavities are the main types of reservoir space,which mainly distributed in the brecciated silty dolomites and silty dolomites. The gypsum dissolution in the para-syngenetic period and early diagenetic stage and the tectonic rupture in Himalayan tectonic movement are the mainly constructive diagenesis. The original sedimentary environment of dolomitic breccia was limited tidal flat or lagoon, and the reservoir was developed by gypsum dissolution,and reformed by tectonic rupture during the Himalayan period.

Key words: reservoir characteristics, breccia reservoir, gypsum dissolution, tectonic rupture, Tuylock Formation, Markit Slope, Tarim Basin

中图分类号: 

  • TE122.2
[1] 罗少辉, 李九梅, 王辉. 塔里木盆地麦盖提斜坡皮山北新1井白云质角砾岩时代厘定. 吉林大学学报(地球科学版), 2018, 48(5):1405-1415. LUO S H, LI J M, WANG H. Age determination of dolomite breccia in Well PSBX1 of Markit Slope in Tarim Basin. Journal of Jilin University(Earth Science Edition), 2018, 48(5):1405-1415.
[2] 李建交, 李慧莉, 郭宪璞, 等. 塔里木盆地皮山北新1井角砾岩段地层时代归属讨论. 地球科学前沿, 2019, 9(12):1310-1318. LI J J, LI H L, GUO X P, et al. A discuss on geologic time of metamorphosed strata of breccia section of Well PBX 1 in Tarim Basin. China Advances in Geosciences, 2019, 9(12):1310-1318.
[3] 岳勇,田景春,赵应权. 塔里木盆地南部皮山北新1井角砾岩的地层归属、成因及油气勘探意义. 地球科学, 2019, 44(11):3894-3909. YUE Y, TIAN J C, ZHAO Y Q. Stratigraphy,origin and significance of oil and gas exploration of Cretaceous breccia in Well PBX1, Southwestern Tarim Basin. Earth Science, 2019, 44(11):3894-3909.
[4] 张长建, 刘少杰, 罗少辉, 等. 塔里木盆地皮山破火山口构造及其油气地质意义. 新疆石油地质, 2016, 37(3):281-285. ZHANG C J, LUI S J, LUO S H, et al. Structure and geological significance of Pishan caldera in Tarim Basin. Xinjiang Petroleum Geology, 2016, 37(3):281-285.
[5] 吕海涛, 顾忆, 丁勇, 等. 塔里木盆地西南部皮山北新1井白垩系油气成因. 石油实验地质, 2016, 38(1):84-90. LYU H T, GU Y, DING Y, et al. Cretaceous petroleum origin in well PSBX1 in the southwestern Tarim Basin. Petroleum Geology & Experiment, 2016, 38(1):84-90.
[6] 岳勇, 田景春, 赵应权, 等. 塔里木盆地和田古隆起对奥陶系油气成藏的控制作用. 地球科学, 2018, 43(11):4215-4225. YUE Y, TIAN J C, ZHAO Y Q, et al. Control of Hetian PaleoUplift on hydrocarbon accumulation of Ordovician, Tarim Basin. Earth Science, 2018, 43(11):4215-4225.
[7] 李慧莉, 刘士林, 杨圣彬, 等. 塔中-巴麦地区构造沉积演化及其对奥陶系储层的控制. 石油与天然气地质, 2014, 35(6):883-892. LI H L, LIU S L, YANG S B, et al. Tectonic sedimentary evolution of Tazhong-Bachu-Maigaiti area and its control on the Ordovician. Oil & Gas Geology, 2014, 35(6):883-892.
[8] 吕海涛, 张仲培, 邵志兵, 等. 塔里木盆地巴楚-麦盖提地区早古生代古隆起的演化及其勘探意义. 石油与天然气地质, 2011, 31(1):76-83. LYU H T, ZHANG Z P, SHAO Z B, et al. Structural evolution and exploration significance of early Paleozoic palaeouplifts in Bachu-Maigaiti area, the Tarim Basin. Oil & Gas Geology, 2011, 31(1):76-83.
[9] 郭宪璞, 丁孝忠, 赵子然, 等. 塔里木盆地西南地区晚白垩世中晚期海相性南北分异研究. 地质论评, 2018, 64(5):1078-1086. GUO X P, DING X Z, ZHAO Z R, et al. The north-south differentiation on the marine feature in the Southwest Tarim Basin during middle-late of the Late Cretaceous. Geological Review, 2018, 64(5):1078-1086.
[10] 林畅松, 李思田, 刘景彦, 等. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化. 岩石学报, 2011, 27(1):210-218. LIN C S, LI S T, LIU J Y, et al. Tectonic framework and paleogeographic evolution of Tarim Basin during the Paleozoic major evolutionary stage. Acta Petrologica Sinica, 2011, 27(1):210-218.
[11] 赵宗举, 吴兴宇, 潘文庆, 等. 塔里木盆地奥陶纪层序岩相古地理. 沉积学报, 2009, 27(5):939-955. ZHAO Z J, WU X Y, PAN W Q, et al. Sequence lithofacies paleogeograthy of Ordovician in Tarim Basin. Acta Sedimentologica Sinica, 2009, 27(5):939-955.
[12] 胡文瑄, 陈琪, 王小林, 等. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 2010, 31(6):810-818. HU W X, CHEN Q, WANG X L, et al. REE models for the distribution of fluids in the formation and evolution of dolomite reservoirs. Oil & Gas Geology, 2010, 31(6):810-818.
[13] 罗清清, 刘波, 姜伟民, 等. 鄂尔多斯盆地中部奥陶系马家沟组五段白云岩储层成岩作用及孔隙演化. 石油与天然气地质, 2020, 41(1):102-115. LUO Q Q, LIU B, JIANG W M, et al. Diagenesis and pore evolution of dolomite reservoir in the 5th member of the Ordovician Majiagou Formation, central Ordos Basin. Oil & Gas Geology, 2020, 41(1):102-115.
[14] 王文凯, 许国明, 宋晓波, 等. 四川盆地雷口坡组膏盐岩成因及其油气地质意义. 成都理工大学学报(自然科学版), 2017, 44(6):697-707. WANG W K, XU G M, SONG X B, et al. Genesis of gypsumsalt in the Leikoupo Formation and its hydrocarbon significance in the Sichuan Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2017, 44(6):697-707.
[15] 丁孝忠, 郭宪璞, 彭阳, 等. 新疆塔里木盆地白垩纪-第三纪层序地层学研究. 地球学报, 2002, 23(3):243-248. DING X Z, GUO X P, PENG Y, et al. A study of the CretaceousTertiary sequence stratigraphy of Tarim Basin, Xinjiang. Acta Geoscientia Sinica, 2002, 23(3):243-248.
[16] 庄红红, 郭峰, 周雪. 塔西南昆仑山前地区晚白垩世沉积演化. 西安科技大学学报, 2013, 33(1):39-45. ZHUANG H H, GUO F, ZHOU X. Evolution of sedimentary environment in Late Cretaceous, Kunlun Mountain Front, Tarim Basin. Journal of Xi'an University of Science and Technology, 2013, 33(1):39-45.
[17] 桑洪, 曹养同, 朱礼春, 等. 塔西南坳陷中新生代蒸发岩沉积初探. 古地理学报, 2014, 16(4):473-482. SANG H, CAO Y T, ZHU L C, et al. Preliminary study of evaporates deposition from the Mesozoic to Cenozoic in southwestern Tarim Depression. Journal of Palaeogeography, 2014, 16(4):473-482.
[18] 张华, 刘成林, 焦鹏程, 等. 塔西南坳陷古新统蒸发岩沉积条件及成因模式初探. 地质学报, 2015, 89(11):2028-2035. ZHANG H, LIU C L, JIAO P C, et al. Sedimentary condition and genetic mode of Paleocene evaporites in the southwestern Depression of the Tarim Basin. Acta Geologica Sinica, 2015, 89(11):2028-2035.
[19] 黄华, 袁娟梅, 彭伟, 等. 江汉盆地古近系潜江组盐湖沉积特征与成藏模式. 岩性油气藏, 2020, 33(2):9-16. HUANG H, YUAN J M, PENG W, et al. Sedimentary characteristics and reservoir accumulation model of salt lake of Paleogene Qianjiang Formation in Qianjiang Basin. Lithologic Reservoirs, 2020, 33(2):9-16.
[20] 黄健玲, 傅强, 邱旭明, 等. 咸化断陷湖盆混积岩特征及沉积模式. 岩性油气藏, 2020, 32(2):54-66. HUANG J L, FU Q, QIU X M, et al. Characteristics and sedimentary models of diamictite in saline faulted lacustrine basin:a case study of Fu 2 member in Jinhu Sag, Subei Basin. Lithologic Reservoirs, 2020, 32(2):54-66.
[21] 毛光周, 刘晓通, 安鹏瑞, 等. 无机地球化学指标在古盐度恢复中的应用及展望. 山东科技大学学报(自然科学版), 2018, 37(1):92-102. MAO G Z, LIU X T, AN P R, et al. Application and outlook of inorganic geochemical in indexes reconstruction of palaeosalinity. Journal of Shandong University of Science and Technology(Natural Science), 2018, 37(1):92-102.
[22] 雷卞军, 阙洪培, 胡宁, 等. 鄂西古生代硅质岩的地球化学特征及沉积环境. 沉积与特提斯地质, 2002, 22(2):70-79. LEI B J, QUE H P, HU N, et al. Geochemistry and sedimentary environments of the Paleozoic siliceous rocks in western Hubei. Sedimentary Geology and Tethyan Geology, 2002, 22(2):70-79.
[23] 孟苗苗, 康志宏, 樊太亮, 等. 痕量元素和碳氧同位素在塔里木盆地西南缘棋盘组沉积环境研究中的应用. 成都理工大学学报(自然科学版), 2016, 43(1):77-85. MENG M M, KANG Z H, FAN T L, et al. Application of trace elements and carbon-oxygen isotopes on the research of sedimentary environment of Qipan Formation in the southwest margin of Tarim Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(1):77-85.
[24] 熊小辉, 肖加飞. 沉积环境的地球化学示踪. 地球与环境, 2011, 39(3):405-414. XIONG X H, XIAO J F. Geochemical indicators of sedimentary environments:a summary. Earth and Environment, 2011, 39(3):405-414.
[25] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of depositional environment and geochemistry of the Upper Pennaylvanian (Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 1994, 99(1/3):65-82.
[26] 何文渊, 李江海, 钱祥麟, 等. 塔里木盆地巴楚断隆中新生代的构造演化. 北京大学学报(自然科学版), 2000, 36(4):539-545. HE W Y, LI J H, QIAN X L, et al. The Meso-Cenozoic evolution of Bachu fault-uplift in Tarim Basin. Acta Scicentiarum Naturalium Universitatis Pekinensis, 2000, 36(4):539-545.
[27] 解巧明, 王震亮, 尹成明, 等. 塔里木盆地塔西南坳陷英吉沙与皮山地区构造演化特征及对油气成藏的影响. 石油实验地质, 2019, 41(2):165-175. XIE Q M, WANG Z L, YIN C M, et al. Tectonic evolution characteristics of Yingjisha and Pishan areas and the influence on petroleum accumulation in the southwest depression, Tarim Basin. Petroleum Geology & Experiment, 2019, 41(2):165-175.
[1] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[2] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[3] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[4] 孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波. 塔里木盆地现代分支河流体系形态、分布及其主控因素[J]. 岩性油气藏, 2024, 36(4): 44-56.
[5] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[6] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[7] 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
[8] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[9] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[10] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[11] 程丹华, 焦霞蓉, 王建伟, 庄东志, 王政军, 江山. 黄骅坳陷南堡凹陷古近系沙一段页岩油储层特征及油气意义[J]. 岩性油气藏, 2022, 34(3): 70-81.
[12] 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116.
[13] 彭军, 夏梦, 曹飞, 夏金刚, 李峰. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30.
[14] 崔俊, 毛建英, 陈登钱, 施奇, 李雅楠, 夏晓敏. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53.
[15] 王永骁, 付斯一, 张成弓, 范萍. 鄂尔多斯盆地东部山西组2段致密砂岩储层特征[J]. 岩性油气藏, 2021, 33(6): 12-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .