岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 120–131.doi: 10.12108/yxyqc.20210511

• 油气地质 • 上一篇    下一篇

玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征

杜猛1,2,3, 向勇1, 贾宁洪2,3, 吕伟峰2,3, 张景4, 张代燕4   

  1. 1. 中国石油大学(北京) 机械与储运工程学院, 北京 102249;
    2. 中国石油勘探开发研究院, 北京 100083;
    3. 提高采收率国家重点实验室, 北京 100083;
    4. 中国石油新疆油田公司 勘探开发研究院, 新疆 克拉玛依 834000
  • 收稿日期:2021-01-11 修回日期:2021-04-30 出版日期:2021-10-01 发布日期:2021-09-30
  • 通讯作者: 向勇(1983-),男,博士,副教授,博士生导师,主要从事多相流腐蚀与防护方面的研究工作。Email:xiangy@cup.edu.cn。 E-mail:xiangy@cup.edu.cn
  • 作者简介:杜猛(1996-),男,中国石油大学(北京)在读硕士研究生,研究方向为油层物理及渗流力学。地址:(102249)北京市昌平区府学路18号。Email:18856336802@163.com
  • 基金资助:
    国家科技重大专项“砂砾岩致密油藏渗流特征研究”(编号:2017ZX05070-002)和中国石油大学(北京)科研基金“复杂环境下油气储运设施腐蚀机理与防护技术研究”(编号:ZX20200128)联合资助

Pore structure characteristics of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag

DU Meng1,2,3, XIANG Yong1, JIA Ninghong2,3, LYU Weifeng2,3, ZHANG Jing4, ZHANG Daiyan4   

  1. 1. College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China;
    2. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    3. State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China;
    4. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield, Karamay 843000, Xinjiang, China
  • Received:2021-01-11 Revised:2021-04-30 Online:2021-10-01 Published:2021-09-30

摘要: 玛湖凹陷百口泉组是重要的砂砾岩油气聚集区。为了研究玛湖凹陷百口泉组致密砂砾岩储层的孔隙结构特征,开展了压汞、核磁共振、铸体薄片等分析,结合微米CT扫描技术、扫描电镜矿物定量评价(QEMSCAN)及MAPS显微图像拼接技术,从尺度与精度、二维与三维综合开展其微观孔隙结构特征研究。结果表明:①玛湖凹陷百口泉组致密砂砾岩储层孔喉尺度分布广泛,呈现较明显双峰特征,大尺度孔喉为亚微米-微米级,而小尺度孔喉为纳米-亚微米级,以0.5~4.0 μm喉道贡献率最高,微米级孔喉对渗流的贡献较大。②微米尺度下,孔隙结构具有强非均质性,复模态等特点,孔隙类型以溶蚀孔、粒间孔及微裂缝为主,孔隙展布状态主要有条带状和孤立状2种,孔隙连通性比孔隙尺度对渗流的贡献更大。③纳米尺度下,扫描电镜确定其主要矿物为石英和长石,粒间压实作用充分,颗粒形状结合紧密,不同孔渗的样品基质内纳米级微孔形态各异,多以分布于矿物颗粒(晶体)内部蜂窝状长石溶蚀孔或填隙物表面微孔为主,可见方解石颗粒解理缝,对微米级球状微孔及纳米级溶孔起到较好的沟通作用。该研究成果可为致密砂砾岩储层孔隙结构表征及"甜点"预测提供借鉴。

关键词: 致密砂砾岩, 复模态, 跨尺度, 数字岩心, 微观孔隙结构表征, 百口泉组, 玛湖凹陷

Abstract: The Baikouquan Formation in Mahu Sag is an important oil and gas accumulation area of glutenite. In order to study the pore structure characteristics of tight glutenite reservoir of Baikouquan Formation in Mahu Sag. The analyses of mercury injection, nuclear magnetic resonance and cast thin sections were carried out. Combined with micro-CT scanning technology, quantitative evaluation of minerals by scanning electron microscope(QEMSCAN) and MAPS micro-image splicing technologies, the comprehensive study of microscopic pore structure characteristics from scale and precision, two-dimension and three-dimension were carried out. The results show that:(1) The pore throat scales of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag are widely distributed, showing obvious bimodal characteristics. The large-scale pore throats are submicron to micron scale, while small scale pore throats are nano to submicron scale. The contribution rate of 0.5-4.0 μm throat is the highest, and the contribution rate of micron scale pore throat to seepage is greater.(2) On micron scale, the pore structure has the characteristics of strong heterogeneity and complex mode. The main pore types are dissolution pore, intergranular pore and micro fracture. The distribution states of pores are mainly banded and isolated. The contribution of pore connectivity to seepage is greater than pore scale.(3) On nano scale, scanning electron microscope show that the main mineral components are quartz and feldspar. The compaction between grains is sufficient, and the grain shape is closely combined. The morphology of nano pores in the samples matrix with different porosity and permeability are distinctive, mainly the honeycomb feldspar dissolution pores in mineral grains (crystals) or micropores on the surface of interstitial materials, and the cleavage fracture of calcite particles can be observed, which play a good role in communicating the micro spherical pores and nano dissolved pores. The research results can provide reference for the pore structure characterization and "sweet spot" prediction of tight glutenite reservoirs.

Key words: tight glutenite, complex mode, cross scale, digital core, microscopic pore structure characterization, Baikouquan Formation, Mahu Sag

中图分类号: 

  • TE122
[1] 林森虎, 邹才能, 袁选俊, 等. 美国致密油开发现状及启示. 岩性油气藏, 2011, 23(4):25-30. LIN S H, ZOU C N, YUAN X J, et al. Current situation and enlightenment of tight oil development in the United States. Lithologic Reservoirs, 2011, 23(4):25-30.
[2] 李国欣, 覃建华, 鲜成钢, 等. 致密砾岩油田高效开发理论认识、关键技术与实践:以准噶尔盆地玛湖油田为例. 石油勘探与开发, 2020, 47(6):1-13. LI G X, QIN J H, XIAN C G, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development:A case study of the Mahu Oilfield, Junggar Basin, NW China. Petroleum Exploration and Development, 2020, 47(6):1-13.
[3] 贾承造, 邹才能, 杨智, 等. 陆相油气地质理论在中国中西部盆地的重大进展. 石油勘探与开发, 2018, 45(4):546-560. JIA C Z, ZOU C N, YANG Z, et al. Significant progress of continental petroleum geology theory in basins of Central and Western China. Petroleum Exploration and Development, 2018, 45(4):546-560.
[4] 黄建波, 张奎, 谢斌, 等. 准噶尔盆地玛湖凹陷百口泉组低渗透率砾岩储层分类. 测井技术, 2020, 44(3):305-311. HUANG J B, ZHANG K, XIE B, et al.Classification and log evaluation to low permeability conglomerate reservior of Baikouquan Formation in Mahu Depression, Junggar Basin. Well Logging Technology, 2020, 44(3):305-311.
[5] 刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响. 地球物理学进展, 2017, 32(3):1019-1028. LIU X J, XIONG J, LIANG L X, et al. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow. Progress in Geophysics, 2017, 32(3):1019-1028.
[6] 陈怡婷, 刘洛夫, 王梦尧, 等. 鄂尔多斯盆地西南部长6、长7储集层特征及其控制因素. 岩性油气藏, 2020, 32(1):51-65. CHEN Y T, LIU L F, WANG M Y, et al. Characteristics and controlling factors of Chang 6 and Chang 7 reservoirs in southwestern Ordos Basin. Lithologic Reservoirs, 2020, 32(1):51-65.
[7] 魏钦廉, 崔改霞, 刘美荣, 等. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素.岩性油气藏, 2021, 33(2):17-25. WEI Q L, CUI G X, LIU M R, et al. Reservoir characteristics and controlling factors of Permian lower He 8 member in southwestern Ordos Basin. Lithologic Reservoirs, 2021, 33(2):17-25.
[8] CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin, 2012, 96(4):665-677.
[9] CLARKSON C R, FREEMAN M, HE L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel, 2012, 95(2):371-385.
[10] 白斌, 朱如凯, 吴松涛, 等. 利用多尺度CT成像表征致密砂岩微观孔喉结构. 石油勘探与开发, 2013, 40(3):329-333. BAI B, ZHU R K, WU S T, et al. Multi-scale method of Nano (Micro) -CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 2013, 40(3):329-333.
[11] 王华超, 韩登林, 欧阳传湘, 等. 库车坳陷北部阿合组致密砂岩储层特征及主控因素. 岩性油气藏, 2019, 31(2):115-123. WANG H C, HAN D L, OUYANG C X, et al. Characteristics and main controlling factors of tight sandstone reservoir of Ahe Formation in northern Kuqa Depression. Lithologic Reservoirs, 2019, 31(2):115-123.
[12] GOLAB A, WARD C R, PERMANA A, et al. High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography,with special reference to modes of mineral occurrence. International Journal of Coal Geology, 2013, 113(Complete):97-108.
[13] BIJOYENDRA B, MITRA K M, DOUGLAS V. Understanding the micro structure of Berea sandstone by the simultaneous use of micro-computed tomography(micro-CT)and focused ion beamscanning electron microscopy(FIB-SEM). Micron, 2011, 42(5):412-418.
[14] 贾宁洪, 吕伟峰, 常天全, 等. 高效无损岩心孔隙度精确测量新方法. 石油学报, 2018, 39(7):824-828. JIA N H, LYU W F, CHANG T Q, et al. A new method for precisely measuring core porosity with high efficiency and no destruction. Acta Petrolei Sinica, 2018, 39(7):824-828.
[15] LYU W F, CHEN S Y, GAO Y, et al. Evaluating seepage radius of tight oil reservoir using digital core modeling approach. Journal of Petroleum Science and Engineering, 2019, 178:609-615.
[16] 廖康涔, 陈轩, 李剑锋, 等. 普光气田飞仙关组滩相储层微观孔隙结构特征分析. 当代化工, 2020, 49(9):2005-2010. LIAO K C, CHEN X, LI J F, et al. Analysis on microcosmic pore structure characteristics of beach facies reservoir of Feixianguan Formation in Puguang Gas Field.Contemporary Chemical Industry, 2020, 49(9):2005-2010.
[17] 操应长, 燕苗苗, 葸克来, 等. 玛湖凹陷夏子街地区三叠系百口泉组砂砾岩储层特征及控制因素. 沉积学报, 2019, 37(5):945-956. CAO Y C, YAN M M, XI K L, et al. Characteristics and controlling factors of glutenite reservoir of Triassic Baikouquan Formation in Xiazijie area of Mahu Sag. Acta Sedimentologica Sinica, 2019, 37(5):945-956.
[18] MAO G T, LAI F P, LI Z P, et al. Characteristics of pore structure of tight gas reservoir and its influence on fluid distribution during fracturing. Journal of Petroleum Science and Engineering, 2020, 193:524-531.
[19] 汪贺, 师永民, 徐大卫, 等. 非常规储层孔隙结构表征技术及进展. 油气地质与采收率, 2019, 26(5):21-30. WANG H, SHI Y M, XU D W, et al. Unconventional reservoir pore structure characterization techniques and progress. Petroleum Geology and Recovery Efficiency, 2019, 26(5):21-30.
[20] 郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述. 岩性油气藏, 2013, 25(5):123-128. HAO L W, WANG Q, TANG J, et al. Research progress of reservoir microscopic pore structure. Lithologic Reservoirs, 2013, 25(5):123-128.
[21] 冷振鹏, 杨胜建, 吕伟峰, 等. 致密油孔隙结构表征方法:以川中致密油储层岩心为例. 断块油气田, 2016, 23(2):161-165. LENG Z P, YANG S J, LYU W F. Pore structure characterization for tight oil reservoirs:Taking Chuanzhong tight oil reservoir cores as examples. Fault-Block Oil & Gas Field, 2016, 23(2):161-165.
[22] ZHU W, YU W, CHEN Y. Digital core modeling from irregular grains. Journal of Applied Geophysics, 2012, 85(2):37-42.
[23] PENG J, HAN H D, XIA Q S, et al. Fractal characteristic of microscopic pore structure of tight sandstone reservoirs in Kalpintag Formation in Shuntuoguole area, Tarim Basin. Petroleum Research, 2020, 5(1):1-17.
[24] 刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验. 地球物理学报, 2014, 57(4):1133-1140. LIU X J, ZHU H L, LIANG L X. Digital rock physics of sandstone based on micro-CT technology, 2014, 57(4):1133-1140.
[25] 李易霖, 张云峰, 丛琳,等. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用:以大安油田扶余油层为例. 吉林大学学报(地球科学版), 2016, 46(2):379-387. LI Y L, ZHANG Y F, CONG L. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservior:An example from Fuyu oil layer in Daan oilfield, 2016, 46(2):379-387.
[26] DU S H. Characteristics and the formation mechanism of the heterogeneous microfractures in the tight oil reservoir of Ordos Basin, China. Journal of Petroleum Science and Engineering, 2020, 191(5):131-138.
[27] 杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征. 岩性油气藏, 2020, 32(3):14-23. YANG F, HE D, MA D M, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir. Lithologic Reservoirs, 2020, 32(3):14-23.
[28] 何建华, 丁文龙, 付景龙, 等. 页岩微观孔隙成因类型研究. 岩性油气藏, 2014, 26(5):30-35. HE J H, DING W L, FU J L, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir. Lithologic Reservoirs, 2014, 26(5):30-35.
[29] 蒋庆平, 孔垂显, 李维锋, 等. 陆相湖盆大型扇三角洲沉积特征与演化规律:以准噶尔盆地玛湖凹陷西斜坡区三叠系百口泉组为例. 沉积学报, 2020, 38(5):923-932. JIANG Q P, KONG C X, LI W F, et al. Sedimentary characteristics and evolution laws of large fan deltas in continental lake basins:A case study of the Triassic Baikouquan Formation in the west slope of Mahu Sag, Junggar Basin. Acta Sedimentologica Sinica, 2020, 38(5):923-932.
[1] 毛锐, 牟立伟, 王刚, 樊海涛. 基于核磁共振自由弛豫特征的含油性评价方法——以玛湖凹陷下乌尔禾组砾岩储层为例[J]. 岩性油气藏, 2021, 33(5): 140-147.
[2] 马永平, 张献文, 朱卡, 王国栋, 潘树新, 黄林军, 张寒, 关新. 玛湖凹陷二叠系上乌尔禾组扇三角洲沉积特征及控制因素[J]. 岩性油气藏, 2021, 33(1): 57-70.
[3] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[4] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[5] 雷海艳, 樊顺, 鲜本忠, 孟颖, 杨红霞, 晏奇, 齐婧. 玛湖凹陷二叠系下乌尔禾组沸石成因及溶蚀机制[J]. 岩性油气藏, 2020, 32(5): 102-112.
[6] 胡潇, 曲永强, 胡素云, 潘建国, 尹路, 许多年, 滕团余, 王斌. 玛湖凹陷斜坡区浅层油气地质条件及勘探潜力[J]. 岩性油气藏, 2020, 32(2): 67-77.
[7] 印森林, 陈恭洋, 陈玉琨, 吴小军. 砂砾岩储层孔隙结构模态控制下的剩余油分布——以克拉玛依油田七东1区克下组为例[J]. 岩性油气藏, 2018, 30(5): 91-102.
[8] 况晏, 司马立强, 瞿建华, 温丹妮, 陈猛, 吴丰. 致密砂砾岩储层孔隙结构影响因素及定量评价——以玛湖凹陷玛131井区三叠系百口泉组为例[J]. 岩性油气藏, 2017, 29(4): 91-100.
[9] 邹妞妞,张大权,钱海涛,吴涛,史基安. 准噶尔盆地玛北斜坡区扇三角洲砂砾岩储层主控因素[J]. 岩性油气藏, 2016, 28(4): 24-33.
[10] 李 兴,张立强,施 辉,郑一丁 . 准噶尔盆地玛湖凹陷百口泉组沉积古环境分析——— 以玛 18 井为例[J]. 岩性油气藏, 2016, 28(2): 80-85.
[11] 庞德新. 砂砾岩储层成因差异及其对储集物性的控制效应----以玛湖凹陷玛 2 井区下乌尔禾组为例[J]. 岩性油气藏, 2015, 27(5): 149-154.
[12] 张有平,盛世锋,高祥录. 玛湖凹陷玛 2 井区下乌尔禾组扇三角洲沉积及有利储层分布[J]. 岩性油气藏, 2015, 27(5): 204-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!