岩性油气藏 ›› 2021, Vol. 33 ›› Issue (2): 180–188.doi: 10.12108/yxyqc.20210219

• 石油工程 • 上一篇    

再谈岩石本体变形的孔隙度不变原则

朱苏阳1, 李冬梅2, 李传亮1, 李会会2, 刘雄志3   

  1. 1. 油气藏地质及开发工程国家重点实验室 西南石油大学, 成都 610599;
    2. 中国石化西北油田分公司完井测试管理中心, 新疆 轮台 841600;
    3. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2020-07-16 修回日期:2020-09-03 出版日期:2021-04-01 发布日期:2021-03-31
  • 第一作者:朱苏阳(1989—),男,博士,讲师,主要从事油藏工程以及煤层气藏工程基础方面的研究工作。地址:(610599)四川省成都市新都区新都大道8号西南石油大学国家重点实验室。Email:suyang.zhu@swpu.edu.cn
  • 通信作者: 李传亮(1962—),男,博士,教授,主要从事油藏工程方面的教学和科研工作。Email:cllipe@qq.com。
  • 基金资助:
    “十三五”国家科技重大专项“超高压有水气藏产能评价及气水流动模拟”(编号:2016ZX05066004-001)资助

Re-discussion on principle of constant porosity during primary deformation of rock

ZHU Suyang1, LI Dongmei2, LI Chuanliang1, LI Huihui2, LIU Xiongzhi3   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610599, China;
    2. Completion and Well Test Management Center, Sinopec Northwest Oilfield Company, Luntai 841600, Xinjiang, China;
    3. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2020-07-16 Revised:2020-09-03 Online:2021-04-01 Published:2021-03-31

摘要: 油藏岩石的本体变形中,骨架颗粒形状不变的假设认为岩石在压缩过程中孔隙度保持不变,然而,岩石骨架颗粒的形状并非严格保持不变。为研究骨架颗粒形状变化对孔隙度的影响,基于弹性变形模型,采用有限元数值模拟方法,研究了多孔介质本体变形过程中的骨架颗粒变形及其对孔隙度的影响机制。结果表明,加载过程中骨架颗粒在约束方向(颗粒接触位置)位移较小,在无约束方向(孔隙位置)位移较大,从而改变了颗粒的形状,降低了岩石的孔隙度,然而,岩石矿物的杨氏模量较大,且岩石中骨架颗粒的约束条件比数值实验中更为苛刻。因此,骨架颗粒变形对于孔隙度的影响极为微弱。数值实验中的刚性表皮仅对孔隙度的初始值有一定的影响;但是岩心夹持器中的柔性表皮则对测量过程有较大的影响,这是导致实验中孔隙度较大变化的直接原因。因此,油藏开采过程中,岩石的变形过程依然可以认为遵循“孔隙度不变性原则”。

关键词: 岩石骨架, 孔隙度, 本体变形, 有约束变形, 数值模拟, 表皮效应

Abstract: In the primary deformation of reservoir rocks,the assumption that the shape of the skeleton particles remains unchanged assumes that the porosity of the rocks remains unchanged during the compression process. However,the shape of the skeleton particles does not strictly remain unchanged. In order to study the influence of the shape change of skeleton particles on porosity,based on the elastic deformation model,finite element numerical simulation method was used to study the deformation of skeleton particles and its influence mechanism on porosity during the primary deformation of porous media. The results show that the displacement of skeleton particles is small in the constraint direction(particle contact position),and it is larger in the unconstrained direction (pore position),which changes the shape of the particles,reduces the porosity of rock. However,the young's modulus of rock minerals is larger,and the constraint conditions of the rock skeleton particles are more demanding than those in numerical experiments. Therefore,the effect of skeleton particle deformation on porosity is very weak. In the numerical experiments,rigid epidermis has only a certain effect on the initial porosity value. However,the flexible skin in the core gripper has a great influence on the measurement process,which is the direct cause of the great change of porosity in the experiment. Therefore,in the process of reservoir production, the deformation process of rock can still be considered to follow the "porosity invariance principle".

Key words: rock skeleton, porosity, primary deformation, constrained deformation, numerical simulation, skin effect

中图分类号: 

  • TE349
[1] ISCAN A G, KOK M V, BAGC A S. Estimation of permeability and rock mechanical properties of limestone reservoir rocks under stress conditions by strain gauge. Journal of Petroleum Science and Engineering, 2006, 53(1/2):13-24.
[2] 薛丹, 张遂安, 吴新民, 等.下寺湾油田长7油层组页岩气储层敏感性实验.岩性油气藏, 2019, 31(3):135-144. XUE D, ZHANG S A, WU X M, et al. Sensitivity experiment of shale gas reservoir of Chang 7 reservoir in Xiasiwan oilfield. Lithologic Reservoirs, 2019, 31(3):135-144.
[3] 毛小龙, 刘月田, 冯月丽, 等.双重有效应力再认识及其综合作用.石油科学通报, 2018, 3(4):390-398. MAO X L, LIU Y T, FENG Y L, et al. Re-recognition of dual effective stresses and the comprehensive effect. Petroleum Science Bulletin, 2018, 3(4):390-398.
[4] 李传亮.关于双重有效应力:回应洪亮博士.新疆石油地质, 2015, 36(2):238-243. LI C L. Discussion on the dual effective stresses of porous media:Reply to Dr Hong Liang. Xinjiang Petroleum Geology, 2015, 36(2):238-243.
[5] 王继伟, 朱玉双, 饶欣久, 等.鄂尔多斯盆地胡尖山地区长61致密砂岩储层成岩特征与孔隙度定量恢复. 岩性油气藏, 2020, 32(3):34-43. WANG J W, ZHU Y S, RAO X J, et al. Diagenetic characteristics and quantitative porosity restoration of Chang 61 tight sandstone reservoir in Hujianshan area, Ordos Basin. Lithologic Reservoirs, 2020, 32(3):34-43.
[6] 郭艳琴, 何子琼, 郭彬程, 等.苏里格气田东南部盒8段致密砂岩储层特征及评价.岩性油气藏, 2019, 31(5):1-11. GUO Y Q, HE Z Q, GUO B C, et al. Reservoir characteristics and evaluation of tight sandstone of He 8 member in southeastern Sulige Gas Field. Lithologic Reservoirs, 2019, 31(5):1-11.
[7] 邓浩阳, 司马立强, 吴玟, 等.致密砂岩储层孔隙结构分形研究与渗透率计算:以川西坳陷蓬莱镇组、沙溪庙组储层为例. 岩性油气藏, 2018, 30(6):76-82. DENG H Y, SIMA L Q, WU W, et al. Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs:a case of Penglaizhen Formation and Shaximiao Formation in western Sichuan Depression. Lithologic Reservoirs, 2018, 30(6):76-82.
[8] 王维斌, 朱静, 马文忠, 等.鄂尔多斯盆地周家湾地区长8致密砂岩储层特征及影响因素.岩性油气藏, 2017, 29(1):51-58. WANG W B, ZHU J, MA W Z, et al. Characteristics and influencing factors of Chang 8 tight sandstone reservoir of Triassic Yanchang Formation in Zhoujiawan area,Ordos Basin. Lithologic Reservoirs, 2017, 29(1):51-58.
[9] 王猛, 曾明, 陈鸿傲, 等.储层致密化影响因素分析与有利成岩相带预测:以马岭油田长8油层组砂岩储层为例.岩性油气藏, 2017, 29(1):59-70. WANG M, ZENG M, CHEN H A, et al. Influencing factors of tight reservoirs and favorable diagenetic facies:a case study of Chang 8 reservoir of the Upper Triassic Yanchang Formation in Maling Oilfield, Ordos Basin. Lithologic Reservoirs, 2017, 29(1):59-70.
[10] 丁景辰, 杨胜来, 胡伟, 等.致密气藏应力敏感性实验.大庆石油地质与开发, 2014, 33(3):170-174. DING J C, YANG S L, HU W, et al. Indoor experiment in the stress sensitivity for tight gas reservoir. Petroleum Geology and Oilfield Development in Daqing, 2014, 33(3):170-174.
[11] 丁景辰, 杨胜来, 聂向荣, 等.致密气藏的应力敏感性及其对气井单井产能的影响. 西安石油大学学报(自然科学版),2014, 29(3):63-67. DING J C, YANG S L, NIE X R, et al. Stress sensitivity of tight gas reservoir and its influence on productivity of gas well. Journal of Xi'an Shiyou University(Natural Science Edition),2014, 29(3):63-67.
[12] 高树生, 熊伟.有效应力对低渗低孔介质孔渗参数的影响.辽宁工程技术大学学报(自然科学版), 2001, 20(4):538-540. GAO S S, XIONG W. The effect of effective stress on the parameter of the low permeability. Journal of Liaoning Technical University(Natural Science), 2001, 20(4):538-540.
[13] 杨通佑, 范尚炯, 陈元千, 等.石油及天然气储量计算方法.北京:石油工业出版社, 1990. YANG T Y, FAN S J, CHEN Y Q, et al. The computation method of oil and gas reserve. Beijing:Petroleum Industry press, 1990.
[14] 李传亮, 孔祥言, 徐献芝, 等.多孔介质的双重有效应力.自然杂志, 1999, 21(5):288-292. LI C L, KONG X Y, XU X Z, et al. Dual effective stress of porous media. Chinese Journal of Nature, 1999, 21(5):288-292.
[15] 李传亮, 朱苏阳.关于应力敏感测试方法的认识误区.岩性油气藏, 2015, 27(6):1-4. LI C L, ZHU S Y. Misunderstanding of measuring methods of stress sensibility. Lithologic Reservoirs, 2015, 27(6):1-4.
[16] 李传亮. 有效应力概念的误用. 天然气工业, 2008, 28(10):130-132. LI C L. Misusage of the concept of effective stress. Natural Gas Industry, 2008, 28(10):130-132.
[17] 李传亮.储层岩石的压缩问题.石油钻采工艺, 2010, 32(5):120-124. LI C L. Discussion on the compression of reservoir rock. Oil Drilling & Production Technology, 2010, 32(5):120-124.
[18] 李传亮, 涂兴万.储层岩石的2种应力敏感机制:应力敏感有利于驱油.岩性油气藏, 2008, 20(1):111-113. LI C L, TU X W. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery. Lithologic Reservoirs, 2008, 20(1):111-113.
[19] 李传亮.油藏工程原理.北京:石油工业出版社, 2011. LI C L. Fundamental of reservoir engineering. Beijing:Petroleum Industry Press, 2011.
[20] 李传亮.岩石本体变形过程中的孔隙度不变性原则:同任勇和孙艾茵二位作者商榷.新疆石油地质, 2005, 26(6):130-132. LI C L. The principle of rock porosity invariability in primary deformation. Xinjiang Petroleum Geology, 2005, 26(6):130-132.
[21] 李传亮.孔隙度校正缺乏理论依据.新疆石油地质, 2003, 24(3):254-256. LI C L. The porosity correction is lack of theoretical basis. Xinjiang Petroleum Geology, 2003, 24(3):254-256.
[22] JAEGER J C, COOK N G W, ZIMMERMAN R W. Fundamentals of rock mechanics. 4th ed. Blackwell Publishing, 2007.
[23] ZHU S Y. Experiment research of tight sandstone gas reservoir stress sensitivity based on the capillary bundle mode. SPE 167638, 2013.
[24] 李传亮. 岩石压缩系数测量新方法. 大庆石油地质与开发, 2008, 27(3):53-54. LI C L. A new measurement method of rock compressibility. Petroleum Geology and Oilfield Development in Daqing, 2008, 27(3):53-54.
[25] ZHU S Y, DU Z M, LI C L, et al. A semi-analytical model for pressure-dependent permeability of tight sandstone reservoirs. Transport in Porous Media, 2018, 122(2):1-18.
[26] MBIA E N, FABRICIUS I L, KROGSBØLL A, et al. Permeability,compressibility and porosity of Jurassic shale from the Norwegian-Danish Basin. Petroleum Geoscience, 2014, 20(3), 257-281.
[27] WU H B, DONG S H, LI D H, et al. Experimental study on dynamic elastic parameters of coal samples. International Journal of Mining Science and Technology, 2015, 25(3):447-452.
[28] GUO, X, YAO Y, LIU D. Characteristics of coal matrix compressibility:an investigation by mercury intrusion porosimetry. Energy & Fuels, 2014, 28(6):3673-3678.
[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[3] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[4] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[5] 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168.
[6] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[7] 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141.
[8] 董敏, 郭伟, 张林炎, 吴中海, 马立成, 董会, 冯兴强, 杨跃辉. 川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1): 43-51.
[9] 张玉晔, 高建武, 赵靖舟, 张恒, 吴和源, 韩载华, 毛朝瑞, 杨晓. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 2021, 33(6): 29-38.
[10] 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188.
[11] 何绪全, 黄东, 赵艾琳, 李育聪. 川中地区大安寨段页岩油气储层测井评价指标体系[J]. 岩性油气藏, 2021, 33(3): 129-137.
[12] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[13] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[14] 王继伟, 朱玉双, 饶欣久, 周树勋, 吴英强, 杨红梅. 鄂尔多斯盆地胡尖山地区长61致密砂岩储层成岩特征与孔隙度定量恢复[J]. 岩性油气藏, 2020, 32(3): 34-43.
[15] 关华, 郭平, 赵春兰, 谭保国, 徐冬梅. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏, 2020, 32(2): 149-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .