岩性油气藏 ›› 2021, Vol. 33 ›› Issue (2): 171–179.doi: 10.12108/yxyqc.20210218

• 油气田开发 • 上一篇    下一篇

基于逸度与压力计算页岩吸附甲烷的等量吸附热差异分析——以延长探区延长组页岩为例

薛培1,2, 张丽霞2, 梁全胜2, 师毅3   

  1. 1. 西北政法大学, 西安 710063;
    2. 陕西延长石油 (集团) 有限责任公司研究院, 西安 710075;
    3. 延长石油集团油气勘探公司, 陕西 延安 716000
  • 收稿日期:2020-04-18 修回日期:2020-06-05 出版日期:2021-04-01 发布日期:2021-03-31
  • 第一作者:薛培(1987—),男,博士,高级工程师,主要从事非常规油气开发与油气投资风险管理研究。地址:(710075)陕西省西安市雁塔区唐延路61号延长科研中心。Email:gwl330@163.com
  • 通信作者: 张丽霞(1962—),女,教授级高级工程师,主要从事油气勘探开发方面的研究工作。Email:309907081@qq.com。
  • 基金资助:
    国家科技重大专项“延安地区陆相页岩气勘探开发关键技术”(编号:2017ZX05039001005)和延长石油青年基金项目“超临界CO2置换页岩气机理研究”(编号:ycsy2020qnjj-B-06)联合资助

Difference analysis of isosteric heat of methane adsorption on shale based on fugacity and pressure: a case study of Yanchang Formation in Yanchang exploration area

XUE Pei1,2, ZHANG Lixia2, LIANG Quansheng2, SHI Yi3   

  1. 1. Northwest University of Political Science and Law, Xi'an 710063, China;
    2. Research Institute, Shaanxi Yanchang Petroleum(Group) Co., Ltd., Xi'an 710075, China;
    3. Yanchang Petroleum Group Exploration Company, Yan'an 716000, Shaanxi, China
  • Received:2020-04-18 Revised:2020-06-05 Online:2021-04-01 Published:2021-03-31

摘要: 为了完善吸附热力学参数的计算方法,明确陆相页岩吸附CH4的热力学特征,以延长探区延长组页岩为研究对象,开展了不同温度下页岩吸附CH4的等温吸附实验,并利用绝对吸附量曲线对比分析了基于逸度-绝对吸附量与压力-绝对吸附量的等量吸附热的差异。结果表明:①逸度小于压力,在低压力区间(0.36~2.21 MPa)内,逸度与压力的差值较小,随着温度降低和压力升高,逸度与压力的差值增加。②基于逸度与压力获得的等量吸附热曲线均具有明显的单调递增的线性特征,但采用压力-绝对吸附量获得的等量吸附热曲线斜率大于采用逸度-绝对吸附量获得的等量吸附热曲线,这表明基于压力-绝对吸附量获得的等量吸附热计算结果中吸附质分子间作用力的影响过大。③绝对吸附量为0.01~0.35 mmol/g,基于逸度-绝对吸附量与压力-绝对吸附量获得的等量吸附热的相对偏差为-86.54%~57.01%,页岩气吸附体系的热力学评价应当采用逸度-绝对吸附量数据作为等量吸附热计算的基础数据。

关键词: Clasius-Clayperon方程, 逸度, 等量吸附热, 页岩, 延长组

Abstract: In order to improve the calculation method of isosteric heat of adsorption,clarify the thermodynamic characteristics of adsorption of CH4 by continental shale and reveal its adsorption mechanism,shale samples from Yanchang Formation in Yanchang exploration area were selected to carry out isothermal adsorption experiment of CH4 adsorption on shale at different temperatures,and the difference of isosteric heat of adsorption based on fugacity-absolute adsorption capacity and pressure-absolute adsorption capacity was analyzed by using absolute adsorption capacity curve. The results show that:(1) Fugacity is less than pressure,and in the pressure range of 0.36-2.21 MPa,the difference between fugacity and pressure is small. With the temperature decreasing and the pressure increasing,the difference increases.(2) The isotherm curves based on fugacity and pressure have obvious monotonic increasing linear characteristics,but the slope of isosteric heat of adsorption curve obtained by pressure-absolute adsorption capacity is larger than that obtained by fugacity-absolute adsorption capacity,which indicates that the intermolecular force of adsorbate has a great influence on the calculation results of isosteric heat of adsorption based on pressure-absolute adsorption capacity.(3) In the absolute adsorption capacity range of 0.01-0.35 mmol/g,the relative deviation of isosteric heat of adsorption obtained based on fugacity-absolute adsorption capacity and pressure-absolute adsorption capacity is -86.54%-57.01%. The data of fugacityabsolute adsorption capacity should be used as the basic data for the calculation of isosteric heart of adsorption in the thermodynamic evaluation of shale gas adsorption system.

Key words: Clasius-Clayperon equation, fugacity, isosteric heat of adsorption, shale, Yanchang Formation

中图分类号: 

  • P618.11
[1] CURTIS J B. Fractured shale-gas systems. AAPG Bulletin, 2002, 86(11):1921-1938.
[2] DONGMIN S, MARTIN B, FLOR S, et al. Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption, 2000, 6(4):275-286.
[3] 周来, 冯启言, 秦勇.CO2和CH4在煤基质表面竞争吸附的热力学分析.煤炭学报, 2011, 36(8):1307-1311. ZHOU L, FENG Q Y, QIN Y. Thermodynamic analysis of competitive adsorption of CO2 and CH4 on coal matrix. Journal of China Coal society, 2011, 36(8):1307-1311.
[4] 崔永君, 张庆玲, 杨锡禄.不同煤的吸附性能及等量吸附热的变化规律.天然气工业, 2003, 23(7):130-131. CUI Y J, ZHANG Q L, YANG X L. The change rules of adsorption capacity and isosteric heat of adsorption of different coals. Natural Gas Industry, 2003, 23(7):130-131.
[5] 卢守青, 王亮, 秦立明.不同变质程度煤的吸附能力与吸附热力学特征分析.煤炭科学技术, 2014(6):130-135. LU S Q, WANG L, QIN L M. Analysis on adsorption capacity and adsorption thermodynamic characteristics of different metamorphic degree coals. Coal Science and Technology, 2014(6):130-135.
[6] 郭为, 熊伟, 高树生, 等.温度对页岩等温吸附/解吸特征影响. 石油勘探与开发, 2013, 40(4):481-485. GUO W, XIONG W, GAO S H, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas. Petroleum Exploration and Development, 2013, 40(4):481-485.
[7] 李晓媛, 曹峰, 岳高凡, 等.柴达木盆地东部石炭系页岩吸附特性实验研究.地学前缘, 2016, 23(5):95-102. LI X Y, CAO F, YUE G F, et al. The experimental study of adsorption characteristics of Carboniferous shale in eastern Qaidam. Earth Science Frontiers, 2016, 23(5):95-102.
[8] 白建平, 张典坤, 杨建强, 等.寺河3号煤甲烷吸附解吸热力学特征.煤炭学报, 2014, 39(9):1812-1819. BAI J P, ZHANG D K, YANG J Q, et al. Thermodynamic characteristics of adsorption-desorption of methane in coal seam 3 at Sihe coal mine. Journal of China Coal Society, 2014, 39(9):1812-1819.
[9] 李树刚, 白杨, 林海飞, 等. CH4, CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟. 煤炭学报, 2018, 43(9):114-121. LI S G, BAI Y, LIN H F, et al. Molecular simulation of adsorption thermodynamics of multicomponent gas in coal. Journal of China Coal Society, 2018, 43(9):114-121.
[10] 林海飞, 蔚文斌, 李树刚, 等.煤体吸附CH4及CO2热力学特性试验研究.中国安全科学学报, 2018, 28(6):129-134. LIN H F, WEI W B, LI S G, et al. Experimental study on thermodynamics characteristics of CH4 and CO2 adsorption on coal. China Safety Science Journal, 2018, 28(6):129-134.
[11] 蔺亚兵, 马东民, 刘钰辉, 等.温度对煤吸附甲烷的影响实验. 煤田地质与勘探, 2012(6):24-28. LIN Y B, MA D M, LIU Y H, et al. Experiment of the influence of temperature on coalbed methane adsorption. Coal Geology & Exploration, 2012(6):24-28.
[12] 岳高伟, 王兆丰, 康博.基于吸附热理论的煤-甲烷高低温等温吸附线预测.天然气地球科学, 2015, 26(1):148-153. YUE G W, WANG Z F, KANG B. Prediction for isothermal adsorption curve of coal/CH4 based on adsorption heat theory. Natural Gas Geoscience, 2015, 26(1):148-153.
[13] 杨峰, 宁正福, 王庆, 等.甲烷在页岩上的吸附热力学.中南大学学报(自然科学版), 2014, 45(8):2871-2877. YANG F, NING Z F, WANG Q, et al. Thermodynamic analysis of methane adsorption on gas shale. Journal of Central South University(Science and Technology), 2014, 45(8):2871-2877.
[14] 杨峰, 宁正福, 刘慧卿, 等.页岩对甲烷的等温吸附特性研究. 特种油气藏, 2013, 20(5):133-136. YANG F, NING Z F, LIU H Q, et al. Methane adsorption characteristics of gas shale. Special Oil & Gas Reservoirs, 2013, 20(5):133-136.
[15] 马东民, 曹石榴, 李萍, 等.页岩气与煤层气吸附/解吸热力学特征对比.煤炭科学技术, 2015, 43(2):64-67. MA D M, CAO S L, LI P, et al. Comparison on adsorption and desorption thermodynamics features between shale gas and coalbed methane. Coal Science and Technology, 2015, 43(2):64-67.
[16] PAN H, RITTER J A, BALBUENA P B. Examination of the approximations used in determining the isosteric heat of adsorption from the Clausius-Clapeyron equation. Langmuir, 1998, 14(21):6323-6327.
[17] 周理, 吕昌忠, 王怡林, 等.述评超临界温度气体在多孔固体上的物理吸附.化学进展, 1999, 11(3):221-226. ZHOU L, LYU C Z, WANG Y L, et al. Physisorption of gases on porous solids at above-critical temperatures.Progress in Chemistry, 1999, 11(3):221-226.
[18] ZHENG Y N, LI Q Z, YUAN C C, et al. Thermodynamic analysis of high-pressure methane adsorption on coal-based activated carbon. Fuel, 2018, 230:172-184.
[19] 薛培, 张丽霞, 梁全胜, 等.陆相页岩吸附CH4的热力学特征. 天然气工业, 2019, 39(11):64-73. XUE P, ZHANG L X, LIANG Q S, et al. Thermodynamic characteristics of CH4 adsorption by continental shale. Natural Gas Industry, 2019, 39(11):64-73.
[20] 中华人民共和国国家质量监督检验检疫总局, 中华人民共和国国家标准化管理委员会. GB/T 19560-2008煤的高压等温吸附试验方法.北京:中国标准出版社, 2008. State Administration of Quality Supervision, Inspection and Quarantine of the PRC & Standardization Administration of the PRC. GB/T 19560-2008 Experimental method of high-pressure isothermal adsorption to coal. Beijing:Standard Press of China, 2008.
[21] 周尚文, 王红岩, 薛华庆, 等.页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法.天然气工业, 2016, 36(11):12-20. ZHOU S W, WANG H Y, XUE H Q, et al. Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method. Natural Gas Industry, 2016, 36(11):12-20.
[22] ROBINSON D B, PENG D Y, CHUNG Y K. The development of the Peng-Robinson equation and its application to phase equilibrium in a system containing methanol. Fluid Phase Equilibria, 1985, 24(1/2):25-41.
[23] OZAWA S, KUSUMI S, OGINO Y. Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin-Astakhov adsorption equation. Journal of Colloid and Interface Science, 1976, 56(1):83-91.
[24] 张珏成. 纯物质逸度定义的讨论. 上海工程技术大学学报, 2004, 18(2):14-17. ZHANG J C. Discussion about fugacity definition of pure matter. Journal of Shanghai University of Engineering Science, 2004, 18(2):14-17.
[25] 鄢浩, 陈晋阳.化工热力学.北京:中国石化出版社, 2011. YAN H, CHEN J Y. Chemical engineering thermodynamics. Beijing:China Petrochemical Press, 2011.
[26] 傅献彩, 沈文霞, 姚天扬, 等.物理化学.北京:高等教育出版社, 2005. FU X C, SHEN W X, YAO T Y, et al. Physical chemistry. Beijing:Higher Education Press, 2005.
[27] AZAHAR F H M, MITRA S, YABUSHITA A, et al. Improved model for the isosteric heat of adsorption and impacts on the performance of heat pump cycles. Applied Thermal Engineering, 2018, 143:688-700.
[28] MENG M, QIU Z S, ZHONG R Z, et al. Adsorption characteristics of supercritical CO2/CH4 on different types of coal and a machine learning approach. Chemical Engineering Journal, 2019, 368:847-864.
[29] KONG S Q, HUANG X, LI K J, et al. Adsorption/desorption isotherms of CH4 and C2 H6 on typical shale samples. Fuel, 2019, 255:115623.
[30] ZHENG Q R, JI X W, GAO S, et al. Analysis of adsorption equilibrium of hydrogen on graphene sheets. International Journal of Hydrogen Energy, 2013, 38(25):10896-10902.
[31] WANG K, QIAO S Z, HU X J. Study of isosteric heat of adsorption and activation energy for surface diffusion of gases on activated carbon using equilibrium and kinetics information. Separation and Purification Technology, 2004, 34(1/3):165-176.
[32] RUTHVEN D M. Principle of adsorption and adsorption process. New York:John Wilev & Sons Inc., 1984.
[1] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[2] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[3] 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168.
[4] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[5] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[6] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[7] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[8] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[9] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[10] 邹连松, 徐文礼, 梁西文, 刘皓天, 周坤, 霍飞, 周林, 文华国. 川东地区下侏罗统自流井组东岳庙段泥页岩沉积特征及物质来源[J]. 岩性油气藏, 2024, 36(4): 122-135.
[11] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[12] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[13] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[14] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[15] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .