岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 43–51.doi: 10.12108/yxyqc.20220105

• 油气地质 • 上一篇    下一篇

川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征

董敏1,2,3, 郭伟4, 张林炎1,2,3, 吴中海1,2,3, 马立成1,2,3, 董会5, 冯兴强1,2,3, 杨跃辉1,2,3   

  1. 1. 中国地质科学院地质力学研究所, 北京 100081;
    2. 自然资源部古地磁与古构造重建重点实验室, 北京 100081;
    3. 中国地质调查局油气地质力学重点实验室, 北京 100081;
    4. 中国石油勘探开发研究院, 北京 100083;
    5. 中国地质调查局西安地质调查中心, 西安 710054
  • 收稿日期:2021-06-25 修回日期:2021-08-18 发布日期:2022-01-21
  • 通讯作者: 郭伟(1973—),男,博士,高级工程师,主要从事页岩气与开发地质等工作。Email:pkuguowei69@petrochina.com.cn。 E-mail:pkuguowei69@petrochina.com.cn
  • 作者简介:董敏(1983-),女,博士,副研究员,主要从事构造地质和油气地质方面的研究。地址:(100081)北京市海淀区民族大学南路11号。Email:dongminyf@sina.com
  • 基金资助:
    中国石油天然气集团公司科技项目“川南深层页岩综合地质评价和效益开发技术研究”(编号:kt2021-11-01)和中国地质调查局地质调查项目“重点地区构造体系及油气页岩气控藏条件调查”(编号:DD20190085)联合资助

Characteristics of paleotectonic stress field and fractures of WufengLongmaxi Formation in Luzhou area, southern Sichuan Basin

DONG Min1,2,3, GUO Wei4, ZHANG Linyan1,2,3, WU Zhonghai1,2,3, MA Licheng1,2,3, DONG Hui5, FENG Xingqiang1,2,3, YANG Yuehui1,2,3   

  1. 1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China;
    2. Key Laboratory of Paleomag-netism and Tectonic Reconstruction, Ministry of Natural Resources, Beijing 100081, China;
    3. Key Laboratory of Petroleum Geo-mechanics, Chinese Geological Survey, Beijing 100081, China;
    4. PetroChina Research Institute of Exploration & Development, Beijing 100083, China;
    5. Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China
  • Received:2021-06-25 Revised:2021-08-18 Published:2022-01-21

摘要: 川南泸州地区为深层页岩气勘探的重点区,中生代以来经历了多期构造运动,下古生界五峰组—龙马溪组深层页岩储层的裂缝主要受控于区域古构造应力场。为了探究泸州地区有利的深层页岩勘探区,以其五峰组—龙马溪组深层页岩地层为研究对象,以褶皱断裂系统、地震资料综合解释、埋深古构造图和页岩岩石力学参数测试为基础,开展了目的层燕山期Ⅲ幕(裂缝主要形成时期)的古构造应力场数值模拟,采用ANSYS有限元数值模拟方法,结合钻井裂缝实测结果,利用裂缝形成的力学原理,预测了其裂缝发育特征。结果表明:该区深层页岩储层的地应力呈差异分布,燕山期Ⅲ幕最大主应力方向为NW向,约为135°;窄背斜核部和断裂附近裂缝发育,低陡构造向斜区裂缝较发育,宽缓向斜核部裂缝弱发育;主要发育水平层理缝和高角度裂缝,裂缝密度分布由NE向SW逐渐降低,在高应力值的低陡构造向斜区,深层页岩储层裂缝发育,有利于游离态天然气聚集。该结论为泸州地区深层页岩气的勘探开发提供了地质依据。

关键词: 古构造应力场, 数值模拟, 裂缝预测, 燕山期, 泸州地区

Abstract: As a key area for deep shale gas exploration in southern Sichuan Basin,Luzhou area has experienced multi-stage tectonic movements since Mesozoic. Studies have shown that fractures of deep shale reservoirs in Wufeng-Longmaxi Formation of Lower Paleozoic are mainly controlled by regional paleotectonic stress field. In order to explore the favorable deep shale exploration areas in Luzhou area,taking the deep shale reservoir of Wufeng-Longmaxi Formation in southern Sichuan Basin as the research object,based on fold-fault system,comprehensive interpretation of seismic data,buried paleostructure depth map and testing of mechanical parameters of shale rocks,an ANSYS finite element numerical simulation method was applied to carry out numerical simulation of the palaeotectonic stress field of the target layer of Yanshan Episode Ⅲ(the main formation period of fractures). Combined with the measured results of drilling fractures,the characteristics of fractures of WufengLongmaxi formations were predicted by using the mechanical principle of fracture formation. The results show that the in-situ stress of the deep shale reservoirs in this area has the characteristics of differential distribution. The maximum principal stress direction of Yanshan Episode Ⅲ is NW,with a value of about 135°. Fractures are developed in the narrow anticlinal core and near faults,relatively developed in the low and steep syncline area,and weakly developed in the wide and gentle synclinal core. Horizontal bedding fractures and high-angle fractures are mainly developed in the study area. The fracture density distribution gradually decreases from NE to SW. In the low and steep syncline area with high stress value,fractures in deep shale reservoir are developed,which is conducive to the accumulation of free natural gas. The results can provide geological basis for deep shale gas exploration and development in Luzhou area.

Key words: paleotectonic stress field, numerical simulation, fracture prediction, Yanshan Episode, Luzhou area

中图分类号: 

  • TE121
[1] 马新华, 谢军.川南地区页岩气勘探开发进展及发展前景.石油勘探与开发, 2018, 45(1):161-169. MA X H, XIE J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin,NW China. Petroleum Exploration and Development, 2018, 45(1):161-169.
[2] 聂海宽, 包书景, 高波, 等.四川盆地及其周缘下古生界页岩气保存条件研究.地学前缘, 2012, 19(3):280-294. NIE H K, BAO S J, GAO B, et al. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery. Earth Science Frontiers, 2012, 19(3):280-294.
[3] 金之钧, 胡宗全, 高波, 等.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 2016, 23(1):1-10. JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations,southeastern Sichuan Basin. Earth Science Frontiers, 2016, 23(1):1-10.
[4] 刘树根, 邓宾, 钟勇, 等.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用. 地学前缘, 2016, 23(1):11-28. LIU S G, DENG B, ZHONG Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery. Earth Science Frontiers, 2016, 23(1):11-28.
[5] SONE H, ZOBACK M D. Viscous relaxation model for predicting least principal stress magnitudes in sedimentary rocks. Journal of Petroleum Science and Engineering, 2014, 124:416-431.
[6] 丁文龙, 曾维特, 王濡岳, 等.页岩储层构造应力场模拟与裂缝分布预测方法及应用.地学前缘, 2016, 23(2):63-74. DING W L, ZENG W T, WANG R Y, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir. Earth Science Frontiers, 2016, 23(2):63-74.
[7] 胡志水, 彭大钧, 戴弹申.川南下二叠统局部构造断层应力数值模拟与裂缝分布. 新疆石油地质, 1994, 15(2):158-162. HU Z S, PENG D J, DAI D S. Numerical simulation of fault stress and fracture distribution within Lower Permian local structures in southern Sichuan. Xinjiang Petroleum Geology, 1994, 15(2):158-162.
[8] 许云飞, 左宇军, 邬忠虎, 等.凤冈地区燕山期构造应力场数值模拟及裂缝预测. 煤炭技术, 2017, 36(7):128-130. XU Y F, ZUO Y J, WU Z H, et al. Numerical simulation of tectonic stress field and fracture prediction of Yanshan period in Fenggang area. Coal Technology, 2017, 36(7):128-130.
[9] 陈峥嵘, 刘书杰, 曹砚锋, 等.沁水盆地煤层地应力模型及压裂裂缝形态预测方法.中国海上油气, 2018, 30(4):163-169. CHEN Z R, LIU S J, CAO Y F, et al. Methods to predict in-situ stress and fracture geometry of coal beds in Qinshui Basin. China Offshore Oil and Gas, 2018, 30(4):163-169.
[10] 杨洪志, 赵圣贤, 刘勇, 等.泸州区块深层页岩气富集高产主控因素.天然气工业, 2019, 39(11):55-63. YANG H Z, ZHAO S X, LIU Y, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou block, southern Sichuan Basin. Natural Gas Industry, 2019, 39(11):55-63.
[11] 王同, 杨克明, 熊亮, 等.川南地区五峰组-龙马溪组页岩层序地层及其对储层的控制.石油学报, 2015, 36(8):915-925. WANG T, YANG K M, XIONG L, et al. Shale sequence stratigraphy of Wufeng-Longmaxi Formation in southern Sichuan and their control on reservoirs. Acta Petrolei Sinica, 2015, 36(8):915-925.
[12] 丛平, 闫建平, 井翠, 等.页岩气储层可压性级别测井评价及展布特征:以川南X地区五峰组-龙马溪组为例.岩性油气藏, 2021, 33(3):177-188. CONG P, YAN J P, JING C, et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir:A case study from Wufeng Formation and Longmaxi Formation in X area,southern Sichuan Basin. Lithologic Reservoirs, 2021, 33(3):177-188.
[13] 潘占昆, 刘冬冬, 黄治鑫, 等.川南地区泸州区块五峰组-龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复.石油科学通报, 2019, 4(3):242-253. PAN Z K, LIU D D, HUANG Z X, et al. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng-Longmaxi shales in the Luzhou area,southern Sichuan Basin. Petroleum Science Bulletin, 2019, 4(3):242-253.
[14] 张成林, 赵圣贤, 张鉴, 等.川南地区深层页岩气富集条件差异分析与启示.天然气地球科学, 2021, 32(2):248-261. ZHANG C L, ZHAO S X, ZHANG J, et al. Analysis and enlightenment of the difference of enrichment conditions for deep shale gas in southern Sichuan Basin. Natural Gas Geoscience, 2021, 32(2):248-261.
[15] XU Z H, ZHENG M J, LIU Z H, et al. Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China. Petroleum Exploration and Development, 2020, 47(6):1183-1193.
[16] 刘树根, 孙玮, 李智武, 等.四川叠合盆地海相碳酸盐岩油气分布特征及其构造主控因素.岩性油气藏, 2016, 28(5):1-17. LIU S G, SUN W, LI Z W, et al. Distribution characteristics of marine carbonate reservoirs and their tectonic controlling factors across the Sichuan superimposed basin. Lithologic Reservoirs, 2016, 28(5):1-17.
[17] 孙玮, 刘树根, 韩克猷, 等.四川盆地燕山期古构造发展及对油气的影响.成都理工大学学报(自然科学版), 2012, 39(1):70-76. SUN W, LIU S G, HAN K Y, et al. Effect of the evolution of palaeotectonics on the petroleum genesis in Yanshan period, Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(1):70-76.
[18] 邱登峰, 郑孟林, 张瑜, 等.塔中地区构造应力场数值模拟研究.大地构造与成矿学, 2012, 36(2):168-175. QIU D F, ZHENG M L, ZHANG Y, et al. Numerical simulation of the tectonic stress field in the Tazhong area. Geotectonica et Metallogenia, 2012, 36(2):168-175.
[19] 范宇, 王佳珺, 刘厚彬, 等.泸州区块全井段地层力学性能及井壁稳定性.科学技术与工程, 2020, 20(16):6433-6439. FAN Y, WANG J J, LIU H B, et al. Formation mechanical properties and wellbore stability of the whole well section in Luzhou block. Science Technology and Engineering, 2020, 20(16):6433-6439.
[20] ZHANG L Y, MA L C, ZHUO X Z, et al. Mesozoic-Cenozoic stress field magnitude in Sichuan Basin,China and its adjacent areas and the implication on shale gas reservoir:Determination by acoustic emission in rocks. China Geology, 2020, 3(4):591-601.
[21] 周灿灿.柏各庄地区构造样式及储层构造裂缝识别与预测. 广州:中国科学院研究生院, 2003. ZHOU C C. Studies on the structure mode of Baigezhuang region and the identification and prediction of structure fracture of reservoirs. Guangzhou:University of Chinese Academy of Sciences, 2003.
[22] 乐光禹, 杜思清, 黄继钧, 等.构造复合联合原理:川黔构造组合叠加分析.成都:成都科技大学出版社, 1996:281. LE G Y, DU S Q, HUANG J J, et al. Principle of tectonic composite combination:Superposition analysis of Sichuan-Guizhou tectonic combination. Chengdu:Chengdu University of Science and Technology Press, 1996:281.
[23] 任浩林, 刘成林, 刘文平, 等.四川盆地富顺-永川地区五峰组-龙马溪组应力场模拟及裂缝发育区预测. 地质力学学报, 2020, 26(1):74-83. REN H L, LIU C L, LIU W P, et al. Stress field simulation and fracture development prediction of the Wufeng FormationLongmaxi Formation in the Fushun-Yongchuan block,Sichuan Basin. Journal of Geomechanics, 2020, 26(1):74-83.
[24] 张守仁, 万天丰, 陈建平, 等.川西坳陷孝泉-新场地区须家河组二-四段构造应力场模拟及裂缝发育区带预测.石油与天然气地质, 2004, 25(1):70-80. ZHANG S R, WAN T F, CHEN J P, et al. Tectonic stress field modeling and fracture prediction in T3x2-4 strata in XiaoquanXinchang area, western Sichuan depression. Oil & Gas Geology, 2004, 25(1):70-80.
[25] 张林炎.安塞油田沿河湾探区长6储层构造裂缝分布定量预测.北京:中国地质科学院, 2007:56-57. ZHANG L Y. Distribution and predication of tectonic fracture prediction for Chang 6 reservoir in Yanhewan explorative area in Ansai oilfield. Beijing:Chinese Academy of Geological Sciences, 2007:56-57.
[26] 周新桂, 邓宏文, 操成杰, 等.储层构造裂缝定量预测研究及评价方法.地球学报, 2003, 24(2):175-180. ZHOU X G, DENG H W, CAO C J, et al. The methods for quantitative prediction and evaluation of structural fissures in reservoirs. Acta Geoscientica Sinica, 2003, 24(2):175-180.
[27] OU C H, LI C C, HUANG S Y, et al. Three-dimensional discrete network modeling of structural fractures based on the geometric restoration of structure surface:Methodology and its application. Journal of Petroleum Science and Engineering, 2018, 161:417-426.
[28] 王志宏, 郝翠果, 李建明, 等.川西前陆盆地超压分布及成因机制.岩性油气藏, 2019, 31(6):36-43. WANG Z H, HAO C G, LI J M, et al. Distribution and genetic mechanism of overpressure in western Sichuan Basin. Lithologic Reservoirs, 2019, 31(6):36-43.
[29] 潘荣, 朱筱敏, 王星星, 等.深层有效碎屑岩储层形成机理研究进展.岩性油气藏, 2014, 26(4):73-80. PAN R, ZHU X M, WANG X X, et al. Advancement on formation mechanism of deep effective clastic reservoir. Lithologic Reservoirs, 2014, 26(4):73-80.
[30] 郑珊珊, 刘洛夫, 汪洋, 等.川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素. 岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi Formation shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65.
[1] 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188.
[2] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[3] 孙夕平, 张昕, 李璇, 韩永科, 王春明, 魏军, 胡英, 徐光成, 张明, 戴晓峰. 基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J]. 岩性油气藏, 2021, 33(1): 220-228.
[4] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[5] 关华, 郭平, 赵春兰, 谭保国, 徐冬梅. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏, 2020, 32(2): 149-160.
[6] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[7] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[8] 卞晓冰, 侯磊, 蒋廷学, 高东伟, 张驰. 深层页岩裂缝形态影响因素[J]. 岩性油气藏, 2019, 31(6): 161-168.
[9] 李继庆, 刘曰武, 黄灿, 高大鹏. 页岩气水平井试井模型及井间干扰特征[J]. 岩性油气藏, 2018, 30(6): 138-144.
[10] 陶帅, 郝永卯, 周杰, 曹小朋, 黎晓舟. 透镜体低渗透岩性油藏合理井网井距研究[J]. 岩性油气藏, 2018, 30(5): 116-123.
[11] 苏皓, 雷征东, 张荻萩, 李俊超, 鞠斌山, 张泽人. 致密油藏体积压裂水平井参数优化研究[J]. 岩性油气藏, 2018, 30(4): 140-148.
[12] 马力, 欧阳传湘, 谭钲扬, 王长权, 宋岩, 林飞. 低渗透油藏CO2驱中后期提效方法研究[J]. 岩性油气藏, 2018, 30(2): 139-145.
[13] 杨哲, 刘威, 胡自多, 王述江, 韩令贺, 王艳香. 时空域波动方程混合网格有限差分数值模拟[J]. 岩性油气藏, 2018, 30(2): 93-109.
[14] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133-139.
[15] 岳世俊, 郑长龙, 杨兆平, 景紫岩, 刘雄志, 金保中. 枚举平衡法在油藏数值模拟初始化中的应用[J]. 岩性油气藏, 2017, 29(6): 142-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[2] 刘伟方, 段永华, 高建虎, 张喜梅, 孙勤华. 利用地震属性预测碳酸盐岩储层[J]. 岩性油气藏, 2007, 19(1): 101 -104 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 张景廉, 石兰亭, 陈启林, 张虎权, 卫平生. 柴达木盆地地壳深部构造特征及油气勘探新领域[J]. 岩性油气藏, 2008, 20(2): 29 -36 .
[5] 尹军强, 朱巨义. 核磁共振录井技术在江苏油田的应用[J]. 岩性油气藏, 2008, 20(2): 102 -107 .
[6] 滕团余, 余建平, 崔海峰, 张年春. YH 地区碳酸盐岩储层预测方法研究及应用[J]. 岩性油气藏, 2008, 20(2): 119 -123 .
[7] 王崇孝,田多文,魏军,杭伟. 酒泉盆地窟窿山油藏裂缝分布特征[J]. 岩性油气藏, 2008, 20(4): 20 -25 .
[8] 王永诗. 桩西—埕岛地区下古生界潜山储集层特征及形成机制[J]. 岩性油气藏, 2009, 21(1): 11 -14 .
[9] 冯文立,黄思静,黄培培,邹明亮,吴萌. 鄂尔多斯盆地东北部太原组砂岩储层特征[J]. 岩性油气藏, 2009, 21(1): 89 -93 .
[10] 郭永强,刘洛夫. 辽河西部凹陷沙三段岩性油气藏主控因素研究[J]. 岩性油气藏, 2009, 21(2): 19 -23 .