岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 52–62.doi: 10.12108/yxyqc.20220106

• 油气地质 • 上一篇    下一篇

鄂西咸丰地区五峰组—龙马溪组硅质岩地球化学特征及地质意义

王登1,2, 周豹1,2, 冷双梁1,2, 温雅茹1, 刘海3, 张小波1, 余江浩1, 陈威1   

  1. 1. 湖北省地质调查院, 武汉 430034;
    2. 湖北省地质勘查工程技术研究中心, 武汉 430022;
    3. 中国石油集团西部钻探工程有限公司苏里格气田分公司, 内蒙古鄂尔多斯 017300
  • 收稿日期:2021-08-25 修回日期:2021-10-28 出版日期:2022-01-01 发布日期:2022-01-21
  • 第一作者:王登(1987-),男,硕士,工程师,主要从事地质矿产调查与勘探方面的工作。地址:(430034)湖北省武汉市硚口区古田五路9号。Email:w362311767@126.com
  • 通信作者: 周豹(1985—),男,硕士,高级工程师,主要从事地质矿产勘查方面的工作。Email:278776817@qq.com。
  • 基金资助:
    湖北省地质勘查基金项目“湖北省页岩气资源潜力评价”(编号:DKC2014-03-04)、中国地质调查局项目“南方地区构造演化控制页岩气形成与分布调查”(编号:DD20160183)、湖北省自然科学基金项目“鄂西地区五峰—龙马溪组页岩孔缝特征对页岩气保存条件的指示”(编号:2020CFB501)和湖北省地质局科技项目“鄂西地区主要含气层系页岩气形成、富集与保存条件研究”(编号:KJ2020-4)联合资助

Geochemical characteristics and geological significance of siliceous rocks of Wufeng-Longmaxi Formation in Xianfeng area, western Hubei

WANG Deng1,2, ZHOU Bao1,2, LENG Shuangliang1,2, WEN Yaru1, LIU Hai3, ZHANG Xiaobo1, YU Jianghao1, CHEN Wei1   

  1. 1. Hubei Geological Survey, Wuhan 430034, China;
    2. Hubei Geological Exploration Engineering Technology Research Center, Wuhan 430022, China;
    3. Sulige Gas Field Branch, CNPC Xibu Drilling Engineering Company Limited, Ordos 017300, Inner Mongolia, China
  • Received:2021-08-25 Revised:2021-10-28 Online:2022-01-01 Published:2022-01-21

摘要: 为了研究鄂西咸丰地区五峰组和龙马溪组硅质岩的地球化学特征和成因,对咸丰地区沙岭剖面硅质岩进行薄片镜下鉴定、扫描电镜、主量和微量元素等分析测试,并与典型热液成因硅质岩对比。结果表明:研究区五峰组和龙马溪组硅质岩的SiO2含量较高(平均质量分数分别为83.58%和76.47%),硅质矿物主要为玉髓,含少量微粒状石英和陆源碎屑石英,具有较高的Al(/Al+Fe+Mn)值、较低的MnO/TiO2值和较高的LaN/YbN值。五峰组和龙马溪组硅质岩的w(LaN)/w(CeN)平均值分别为1.15和1.06,具有微弱负Ce异常和负Eu异常,与热液成因硅质岩差异明显。研究区五峰组和龙马溪组硅质岩为正常海水沉积成因,以生物沉积作用为主,并伴有陆源输入,沉积环境为大陆边缘的半局限深水陆棚。生物硅含量和TOC含量并不是简单的线性关系,而是具有先增大后减小的特征;放射虫体内大量发育的石英粒内孔和有机质孔可以显著提高硅质岩储集空间,进而改善硅质岩储存页岩气的能力。

关键词: 地球化学特征, 硅质岩, 五峰组, 龙马溪组, 咸丰地区, 鄂西

Abstract: In order to study the geochemical characteristics and genesis of siliceous rocks of Wufeng-Longmaxi Formation in Xianfeng area of western Hubei, the siliceous rocks of Shaling profile in Xianfeng area were identified by thin section identification, scanning electron microscope, major and trace elements analysis, and compared with typical hydrothermal siliceous rocks. The results show that the siliceous rocks of Wufeng Formation and Longmaxi Formation in the study area have high SiO2 content(the average mass fraction is 83.58% and 76.47% respectively). The siliceous minerals are mainly chalcedony, containing a small amount of micro quartz and terrigenous clastic quartz, with high Al(/Al+ Fe+ Mn), low MnO/TiO2 and high LaN/YbN values. The average values of w(LaN)/w(CeN) of Wufeng Formation and Longmaxi Formation are 1.15 and 1.06 respectively, with weak negative Ce anomaly and negative Eu anomaly, which are obviously different from hydrothermal siliceous rocks. The siliceous rocks of Wufeng Formation and Longmaxi Formation in the study area are of normal marine sedimentary origin, mainly biological sedimentation, accompanied by terrigenous input, and the sedimentary environment is a semi-restricted deep-water shelf on the continental margin. The relationship between biogenic silica content and TOC content is not a simple linear one, but increases at first and then decreases. Furthermore, the quartz intragranular pores and organic pores developed in radiolarians can significantly increase the reservoir space of siliceous rocks and improve shale gas capacity storage of siliceous rocks.

Key words: geochemical characteristics, siliceous rock, Wufeng Formation, Longmaxi Formation, Xianfeng area, western Hubei

中图分类号: 

  • TE122.1+13
[1] 何俊国, 周永章, 聂凤军, 等.西藏南部热水沉积硅质岩岩石学和地球化学特征及地质意义. 矿物岩石地球化学通报, 2007, 26(1):74-81. HE J G, ZHOU Y Z, NIE F J, et al. Petrologic and geochemical characteristics of the hydrothermal chert in southern Tibet and its geological significance. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(1):74-81.
[2] 邱振, 谈昕, 卢斌, 等. 四川盆地巫溪地区五峰组-龙马溪组硅质岩地球化学特征. 矿物岩石地球化学通报, 2018, 37(5):880-887. QIU Z, TAN X, LU B, et al. Geochemical characteristics of cherts from the Wufeng and Longmaxi Formations in the Wuxi area, Sichuan Basin. Bulletin of Mineralogy, Petrology and Geochemi-stry, 2018, 37(5):880-887.
[3] 危凯, 陈孝红, 王传尚, 等. 湘鄂西地区晚埃迪卡拉世-早寒武世硅质岩成因及其页岩气地质意义. 地质科技通报, 2020, 39(2):20-30.WEI K, CHEN X H, WANG C S, et al. Origin of siliceous rocks in west Hunan and Hubei provinces during Late Ediacaran-Early Cambrian, and its geological significance of shale gas. Bulletin of Geological Science and Technology, 2020, 39(2):20-30.
[4] 张茜, 王剑, 余谦, 等. 扬子地台西缘盐源盆地下志留统龙马溪组黑色页岩硅质成因及沉积环境.地质论评, 2018, 64(3):610-622. ZHANG Q, WANG J, YU Q, et al. The silicon source and sedimentary environment of the Lower Silurian Longmaxi Formation in Yanyuan Basin, western edge of the Yangtze Platform. Geological Review, 2018, 64(3):610-622.
[5] 黄志诚, 黄钟瑾. 下扬子区五峰组火山碎屑岩与放射虫硅质岩. 沉积学报, 1991, 9(2):1-15. HUANG Z C, HUANG Z J. Pyroclastic rocks and radiolarian silicalites of Wufeng Formation in Lower Yangtze region. Acta Sedimentologica Sinica, 1991, 9(2):1-15.
[6] 高长林, 何将启. 北大巴山硅质岩的地球化学特征及其成因. 地球科学——中国地质大学学报, 1999, 24(3):246-250. GAO C L, HE J Q. Geochemical characteristics and genesis of siliceous rocks in northern of Daba mountain. Earth SciencesJournal of China University of Geosciences, 1999, 24(3):246250.
[7] 刘伟, 许效松, 冯心涛, 等. 中上扬子上奥陶统五峰组含放射虫硅质岩与古环境. 沉积与特提斯地质, 2010, 30(3):65-70. LIU W, XU X S, FENG X T, et al. Radiolarian bearing silicalites and paleoenvironment of Upper Ordovician Wufeng Formation in Middle Upper Yangtze. Sedimentary and Tethyan Geology, 2010, 30(3):65-70.
[8] 王淑芳, 邹才能, 董大忠, 等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义. 北京大学学报(自然科学版), 2014, 50(3):476-486. WANG S F, ZOU C N, DONG D Z, et al. Biogenic silica of organicrich shale in Sichuan Basin and its significance for shale gas. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3):476-486.
[9] 王秀平, 牟传龙, 肖朝晖, 等.鄂西南地区五峰组-龙马溪组连续沉积特征. 天然气地球科学, 2019, 30(5):635-651. WANG X P, MOU C L, XIAO Z H, et al. Sedimentary characteristics of Ordovician Wufeng Formation-Longmaxi Formation in southwestern Hubei province. Natural Gas Geoscience, 2019, 30(5):635-651.
[10] 何贵松, 何希鹏, 高玉巧, 等. 中国南方3套海相页岩气成藏条件分析. 岩性油气藏, 2019, 31(1):57-68. HE G S, HE X P, GAO Y Q, et al. Analysis of accumulation conditions of three sets of marine shale gas in southern China. Lithologic Reservoirs, 2019, 31(1):57-68.
[11] 郑珊珊, 刘洛夫, 汪洋, 等. 川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素. 岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi Formation shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65.
[12] 王朋飞, 金璨, 臧小鹏, 等. 渝东南地区海相页岩有机质孔隙发育特征及演化. 岩性油气藏, 2020, 32(5):46-53. WANG P F, JIN C, ZANG X P, et al. Development characteristics and evolution of organic matter pores of marine shale in southeastern Chongqing. Lithologic Reservoirs, 2020, 32(5):46-53.
[13] 高乔, 王兴志, 朱逸青, 等. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素. 岩性油气藏, 2019, 31(4):72-84. GAO Q, WANG X Z, ZHU Y Q, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan. Lithologic Reservoirs, 2019, 31(4):72-84.
[14] 赵建华, 金之钧, 金振奎, 等. 四川盆地五峰组-龙马溪组页岩岩相类型与沉积环境. 石油学报, 2016, 37(5):572-586. ZHAO J H, JIN Z J, JIN Z K, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation in Sichuan Basin. Acta Petrolei Sinica, 2016, 37(5):572-586.
[15] 许涛, 韦恒叶, 张璇, 等. 中二叠统茅口组热液交代硅质岩成因-来自贵州桑树湾剖面角砾状硅质岩元素及硅同位素的证据. 石油学报, 2020, 41(4):446-456. XU T, WEI H Y, ZHANG X, et al. Genesis of hydrothermal replaced cherts in the Middle Permian Maokou Formation:Evidences from elements and silicon isotopes of brecciated cherts in Sangshuwan section, Guizhou province. Acta Petrolei Sinica, 2020, 41(4):446-456.
[16] 李红敬, 林正良, 解习农. 下扬子地区古生界硅岩地球化学特征及成因. 岩性油气藏, 2015, 27(5):232-239. LI H J, LIN L Z, XIE X N. Geochemical characteristics and origin of Paleozoic siliceous rocks in Lower Yangtze area. Lithologic Reservoirs, 2015, 27(5):232-239.
[17] BOSTROM K, PETERSON M N A. The origin of aluminumpoor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 1969, 7(5):427-447.
[18] MURRAY R W. Chemical criteria to identify the depositional environment of chert:General principles and applications. Sedimentary Geology, 1994, 90(3/4):213-232.
[19] ADACHI M, YAMAMOTO K, SUGISAKI R. Hydrothermal chert and associated siliceous rocks from the northern Pacific:Their geological significance as indication of ocean ridge activity. Sedimentary Geology, 1986, 47(1/2):125-148.
[20] YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 1987, 52(1/2):65-108.
[21] 张燕, 陈翠华, 刘树根, 等.贵州桑木场地区硅质岩地球化学特征及其成因探讨. 矿物岩石地球化学通报, 2013, 32(6):753-758. ZHANG Y, CHEN C H, LIU S G, et al. Geochemical characteristics and genesis discussion of the siliceous rock in the Sang Muchang area, Guizhou. China. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6):753-758.
[22] 黄虎, 杜远生, 杨江海, 等. 水城-紫云-南丹裂陷盆地晚古生代硅质岩沉积物地球化学特征及其地质意义. 地质学报, 2012, 86(12):1994-2010. HUANG H, DU Y S, YANG J H, et al. Geochemical features of siliceous sediments of the Shuicheng-Ziyun-Nandan rift basin in the Late Paleozoic and their tectonic implication. Acta Geologica Sinica, 2012, 86(12):1994-2010.
[23] BOSTROM K, KRAEMER T, GARTNER S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chemical Geology, 1973, 11(2):123-148.
[24] 张聪, 黄虎, 侯明才.地球化学方法在硅质岩成因与构造背景研究中的进展问题.成都理工大学学报(自然科学版), 2017, 44(3):294-304. ZHANG C, HUANG H, HOU M C. Progress and problems in the geochemical study on chert genesis for interpretation of tectonic background. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(3):294-304.
[25] 彭军, 伊海生, 夏文杰.扬子板块东南大陆边缘上震旦统热水成因硅质岩的地球化学标志. 成都理工学院学报, 2000, 27(1):8-14. PENG J, YI H S, XIA W J. Geochemical characteristics of the Upper Sinian hydrothermal chert on the southeastern continental margin of the Yangtze plate. Journal of Chengdu University of Technology, 2000, 27(1):8-14.
[26] 何俊国, 周永章, 杨志军, 等.藏南彭错林硅质岩地球化学特征及沉积环境分析. 吉林大学学报(地球科学版), 2009, 39(6):1056-1065. HE J G, ZHOU Y Z, YANG Z J, et al. Study on geochemical characteristics and depositional environment of Pengcuolin chert, southern Tibet. Journal of Jilin University(Earth Science Edition), 2009, 39(6):1056-1065.
[27] 张亚冠, 杜远生, 徐亚军, 等. 湘中震旦纪-寒武纪之交硅质岩地球化学特征及成因环境研究. 地质论评, 2015, 61(3):499-510. ZHANG Y G, DU Y S, XU Y J, et al. Geochemical characteristics of siliceous rocks during the Transition from Sinian(Ediacaran)to Cambrian in central Hunan and its implication for genesis and sedimentary environment. Geological Review, 2015, 61(3):499-510.
[28] CHEN D Z, QING H R, YAN X, et al. Hydrothermal venting and basin evolution(Devonian, South China):Constraints from rare earth element geochemistry of chert. Sedimentary Geology, 2006, 183(3/4):203-216.
[29] DOUVILLE E, BIENVENU P, CHARLOU J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 1999, 63(5):627-643.
[30] 宋史刚, 丁振举, 姚书振, 等. 碧口地块富铁硅岩REE及NdSr同位素组成及其古环境意义. 矿物岩石, 2008, 28(3):57-63. SONG S G, DING Z J, YAO S Z, et al. REE and Nd-Sr isotopic compositions of iron rich silicalites in Bikou terrane:Implication to ancient sedimentary environmental. Mineralogy and Petrology, 2008, 28(3):57-63.
[31] FLEET A J, RONA P A, BOSTROM K, et al. The rare earth element evidence in hydrothermal process at seafloor spreading centers. New York:Plenum Press, 1983:535-555.
[32] MURRAY R W, BUCHHOLTZ T, BRINK M R, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 18(3):268-271.
[33] SUGISAKI R, YAMAMOTO K, ADACHI M. Triassic bedded cherts in central Japan are not pelagic. Nature, 1982, 298(5875):644-647.
[34] MURRAY R W, BUCHHOLTZ T, BRINK M R, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment:Assessing the influence of chemical fractionation during diagenesis. Geochimica et Cosmochimica Acta, 1992, 56(7):2657-2671.
[35] 赵建华, 金之钧, 金振奎, 等.四川盆地五峰组-龙马溪组含气页岩中石英成因研究. 天然气地球科学, 2016, 27(2):377386. ZHAO J H, JIN Z J, JIN Z K, et al. The genesis of quartz in Wufeng-Longmaxi gas shales Sichuan Basin. Natural Gas Geoscience, 2016, 27(2):377-386.
[36] 刘江涛, 李永杰, 张元春, 等. 焦石坝五峰组龙马溪组页岩硅质生物成因的证据及其地质意义. 中国石油大学学报(自然科学版), 2017, 41(1):34-41. LIU J T, LI Y J, ZHANG Y C, et al. Evidences of biogenic silica of Wufeng-Longmaxi Formation shale in Qiaoshiba area and its geological significance. Journal of China University of Petroleum(Edition of Natural Sciences), 2017, 41(1):34-41.
[37] 杨宇宁, 王剑, 郭秀梅, 等.渝东北田坝地区五峰-龙马溪组页岩矿物学特征及其油气地质意义. 沉积学报, 2017, 35(4):772-778. YANG Y N, WANG J, GUO X M, et al. Mineralogical characteristics and petroleum geological significance of Wufeng-Longmaxi Formation shale in the Tianba area, northeast of Chongqing. Acta Sedimentologica Sinica, 2017, 35(4):772-778.
[38] 卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组-龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系. 地学前缘, 2018, 25(4):226-236. LU L F, QIN J Z, SHEN B J, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment. Earth Science Frontiers, 2018, 25(4):226-236.
[39] 蔡全升, 陈孝红, 张保民, 等.鄂西宜昌地区五峰组-龙马溪组黑色岩系硅质来源及其油气地质意义.地质学报, 2020, 94(3):931-946. CAI Q S, CHEN X H, ZHANG B M, et al. Origin of siliceous minerals in the black shale of the Wufeng and Longmaxi formations in the Yichang area, western Hubei Province:Geological significance for shale gas. Acta Geologica Sinica, 2020, 94(3):931-946.
[40] 孙川翔, 聂海宽, 刘光祥, 等. 石英矿物类型及其对页岩气富集开采的控制:以四川盆地及其周缘五峰组龙马溪组为例. 地球科学, 2019, 44(11):3691-3707. SUN C X, NIN H K. LIU G X, et al. Quartz type and its control on shale gas enrichment and production:A case study of the WufengLongmaxi formations in the Sichuan Basin and its surrounding areas, China. Erath Science, 2019, 44(11):3691-3707.
[1] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[2] 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132.
[3] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[4] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[5] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[6] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[7] 孙汉骁, 邢凤存, 谢武仁, 钱红杉. 四川盆地及周缘地区晚奥陶世岩相古地理演化[J]. 岩性油气藏, 2024, 36(1): 121-135.
[8] 李二庭, 米巨磊, 张宇, 潘越扬, 迪丽达尔·肉孜, 王海静, 高秀伟. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征[J]. 岩性油气藏, 2024, 36(1): 88-97.
[9] 郭谨豪, 胡国艺, 何坤, 米敬奎, 田连杰, 贺飞, 郭楚媛, 卢梦蝶. 川北地区二叠系大隆组烃源岩地球化学特征及沉积环境[J]. 岩性油气藏, 2023, 35(5): 139-152.
[10] 梁小聪, 牛杏, 胡明毅, 黎洋, 胡忠贵, 蔡全升. 湘鄂西下寒武统牛蹄塘组黑色页岩发育特征及沉积环境[J]. 岩性油气藏, 2023, 35(4): 102-114.
[11] 邓美玲, 王宁, 李新琦, 陈容涛, 刘岩, 徐耀辉. 渤海莱州湾凹陷中部古近系沙三段烃源岩地球化学特征及沉积环境[J]. 岩性油气藏, 2023, 35(1): 49-62.
[12] 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71.
[13] 魏新, 唐建云, 宋红霞, 陈玉宝. 鄂尔多斯盆地甘泉地区上古生界烃源岩地球化学特征及生烃潜力[J]. 岩性油气藏, 2022, 34(6): 92-100.
[14] 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130.
[15] 张梦琳, 李郭琴, 何嘉, 衡德. 川西南缘天宫堂构造奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2022, 34(2): 141-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .