岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 4351.doi: 10.12108/yxyqc.20220105
董敏1,2,3, 郭伟4, 张林炎1,2,3, 吴中海1,2,3, 马立成1,2,3, 董会5, 冯兴强1,2,3, 杨跃辉1,2,3
DONG Min1,2,3, GUO Wei4, ZHANG Linyan1,2,3, WU Zhonghai1,2,3, MA Licheng1,2,3, DONG Hui5, FENG Xingqiang1,2,3, YANG Yuehui1,2,3
摘要: 川南泸州地区为深层页岩气勘探的重点区,中生代以来经历了多期构造运动,下古生界五峰组—龙马溪组深层页岩储层的裂缝主要受控于区域古构造应力场。为了探究泸州地区有利的深层页岩勘探区,以其五峰组—龙马溪组深层页岩地层为研究对象,以褶皱断裂系统、地震资料综合解释、埋深古构造图和页岩岩石力学参数测试为基础,开展了目的层燕山期Ⅲ幕(裂缝主要形成时期)的古构造应力场数值模拟,采用ANSYS有限元数值模拟方法,结合钻井裂缝实测结果,利用裂缝形成的力学原理,预测了其裂缝发育特征。结果表明:该区深层页岩储层的地应力呈差异分布,燕山期Ⅲ幕最大主应力方向为NW向,约为135°;窄背斜核部和断裂附近裂缝发育,低陡构造向斜区裂缝较发育,宽缓向斜核部裂缝弱发育;主要发育水平层理缝和高角度裂缝,裂缝密度分布由NE向SW逐渐降低,在高应力值的低陡构造向斜区,深层页岩储层裂缝发育,有利于游离态天然气聚集。该结论为泸州地区深层页岩气的勘探开发提供了地质依据。
中图分类号:
[1] 马新华, 谢军.川南地区页岩气勘探开发进展及发展前景.石油勘探与开发, 2018, 45(1):161-169. MA X H, XIE J. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin,NW China. Petroleum Exploration and Development, 2018, 45(1):161-169. [2] 聂海宽, 包书景, 高波, 等.四川盆地及其周缘下古生界页岩气保存条件研究.地学前缘, 2012, 19(3):280-294. NIE H K, BAO S J, GAO B, et al. A study of shale gas preservation conditions for the Lower Paleozoic in Sichuan Basin and its periphery. Earth Science Frontiers, 2012, 19(3):280-294. [3] 金之钧, 胡宗全, 高波, 等.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 2016, 23(1):1-10. JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations,southeastern Sichuan Basin. Earth Science Frontiers, 2016, 23(1):1-10. [4] 刘树根, 邓宾, 钟勇, 等.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用. 地学前缘, 2016, 23(1):11-28. LIU S G, DENG B, ZHONG Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery. Earth Science Frontiers, 2016, 23(1):11-28. [5] SONE H, ZOBACK M D. Viscous relaxation model for predicting least principal stress magnitudes in sedimentary rocks. Journal of Petroleum Science and Engineering, 2014, 124:416-431. [6] 丁文龙, 曾维特, 王濡岳, 等.页岩储层构造应力场模拟与裂缝分布预测方法及应用.地学前缘, 2016, 23(2):63-74. DING W L, ZENG W T, WANG R Y, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir. Earth Science Frontiers, 2016, 23(2):63-74. [7] 胡志水, 彭大钧, 戴弹申.川南下二叠统局部构造断层应力数值模拟与裂缝分布. 新疆石油地质, 1994, 15(2):158-162. HU Z S, PENG D J, DAI D S. Numerical simulation of fault stress and fracture distribution within Lower Permian local structures in southern Sichuan. Xinjiang Petroleum Geology, 1994, 15(2):158-162. [8] 许云飞, 左宇军, 邬忠虎, 等.凤冈地区燕山期构造应力场数值模拟及裂缝预测. 煤炭技术, 2017, 36(7):128-130. XU Y F, ZUO Y J, WU Z H, et al. Numerical simulation of tectonic stress field and fracture prediction of Yanshan period in Fenggang area. Coal Technology, 2017, 36(7):128-130. [9] 陈峥嵘, 刘书杰, 曹砚锋, 等.沁水盆地煤层地应力模型及压裂裂缝形态预测方法.中国海上油气, 2018, 30(4):163-169. CHEN Z R, LIU S J, CAO Y F, et al. Methods to predict in-situ stress and fracture geometry of coal beds in Qinshui Basin. China Offshore Oil and Gas, 2018, 30(4):163-169. [10] 杨洪志, 赵圣贤, 刘勇, 等.泸州区块深层页岩气富集高产主控因素.天然气工业, 2019, 39(11):55-63. YANG H Z, ZHAO S X, LIU Y, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou block, southern Sichuan Basin. Natural Gas Industry, 2019, 39(11):55-63. [11] 王同, 杨克明, 熊亮, 等.川南地区五峰组-龙马溪组页岩层序地层及其对储层的控制.石油学报, 2015, 36(8):915-925. WANG T, YANG K M, XIONG L, et al. Shale sequence stratigraphy of Wufeng-Longmaxi Formation in southern Sichuan and their control on reservoirs. Acta Petrolei Sinica, 2015, 36(8):915-925. [12] 丛平, 闫建平, 井翠, 等.页岩气储层可压性级别测井评价及展布特征:以川南X地区五峰组-龙马溪组为例.岩性油气藏, 2021, 33(3):177-188. CONG P, YAN J P, JING C, et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir:A case study from Wufeng Formation and Longmaxi Formation in X area,southern Sichuan Basin. Lithologic Reservoirs, 2021, 33(3):177-188. [13] 潘占昆, 刘冬冬, 黄治鑫, 等.川南地区泸州区块五峰组-龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复.石油科学通报, 2019, 4(3):242-253. PAN Z K, LIU D D, HUANG Z X, et al. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng-Longmaxi shales in the Luzhou area,southern Sichuan Basin. Petroleum Science Bulletin, 2019, 4(3):242-253. [14] 张成林, 赵圣贤, 张鉴, 等.川南地区深层页岩气富集条件差异分析与启示.天然气地球科学, 2021, 32(2):248-261. ZHANG C L, ZHAO S X, ZHANG J, et al. Analysis and enlightenment of the difference of enrichment conditions for deep shale gas in southern Sichuan Basin. Natural Gas Geoscience, 2021, 32(2):248-261. [15] XU Z H, ZHENG M J, LIU Z H, et al. Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China. Petroleum Exploration and Development, 2020, 47(6):1183-1193. [16] 刘树根, 孙玮, 李智武, 等.四川叠合盆地海相碳酸盐岩油气分布特征及其构造主控因素.岩性油气藏, 2016, 28(5):1-17. LIU S G, SUN W, LI Z W, et al. Distribution characteristics of marine carbonate reservoirs and their tectonic controlling factors across the Sichuan superimposed basin. Lithologic Reservoirs, 2016, 28(5):1-17. [17] 孙玮, 刘树根, 韩克猷, 等.四川盆地燕山期古构造发展及对油气的影响.成都理工大学学报(自然科学版), 2012, 39(1):70-76. SUN W, LIU S G, HAN K Y, et al. Effect of the evolution of palaeotectonics on the petroleum genesis in Yanshan period, Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(1):70-76. [18] 邱登峰, 郑孟林, 张瑜, 等.塔中地区构造应力场数值模拟研究.大地构造与成矿学, 2012, 36(2):168-175. QIU D F, ZHENG M L, ZHANG Y, et al. Numerical simulation of the tectonic stress field in the Tazhong area. Geotectonica et Metallogenia, 2012, 36(2):168-175. [19] 范宇, 王佳珺, 刘厚彬, 等.泸州区块全井段地层力学性能及井壁稳定性.科学技术与工程, 2020, 20(16):6433-6439. FAN Y, WANG J J, LIU H B, et al. Formation mechanical properties and wellbore stability of the whole well section in Luzhou block. Science Technology and Engineering, 2020, 20(16):6433-6439. [20] ZHANG L Y, MA L C, ZHUO X Z, et al. Mesozoic-Cenozoic stress field magnitude in Sichuan Basin,China and its adjacent areas and the implication on shale gas reservoir:Determination by acoustic emission in rocks. China Geology, 2020, 3(4):591-601. [21] 周灿灿.柏各庄地区构造样式及储层构造裂缝识别与预测. 广州:中国科学院研究生院, 2003. ZHOU C C. Studies on the structure mode of Baigezhuang region and the identification and prediction of structure fracture of reservoirs. Guangzhou:University of Chinese Academy of Sciences, 2003. [22] 乐光禹, 杜思清, 黄继钧, 等.构造复合联合原理:川黔构造组合叠加分析.成都:成都科技大学出版社, 1996:281. LE G Y, DU S Q, HUANG J J, et al. Principle of tectonic composite combination:Superposition analysis of Sichuan-Guizhou tectonic combination. Chengdu:Chengdu University of Science and Technology Press, 1996:281. [23] 任浩林, 刘成林, 刘文平, 等.四川盆地富顺-永川地区五峰组-龙马溪组应力场模拟及裂缝发育区预测. 地质力学学报, 2020, 26(1):74-83. REN H L, LIU C L, LIU W P, et al. Stress field simulation and fracture development prediction of the Wufeng FormationLongmaxi Formation in the Fushun-Yongchuan block,Sichuan Basin. Journal of Geomechanics, 2020, 26(1):74-83. [24] 张守仁, 万天丰, 陈建平, 等.川西坳陷孝泉-新场地区须家河组二-四段构造应力场模拟及裂缝发育区带预测.石油与天然气地质, 2004, 25(1):70-80. ZHANG S R, WAN T F, CHEN J P, et al. Tectonic stress field modeling and fracture prediction in T3x2-4 strata in XiaoquanXinchang area, western Sichuan depression. Oil & Gas Geology, 2004, 25(1):70-80. [25] 张林炎.安塞油田沿河湾探区长6储层构造裂缝分布定量预测.北京:中国地质科学院, 2007:56-57. ZHANG L Y. Distribution and predication of tectonic fracture prediction for Chang 6 reservoir in Yanhewan explorative area in Ansai oilfield. Beijing:Chinese Academy of Geological Sciences, 2007:56-57. [26] 周新桂, 邓宏文, 操成杰, 等.储层构造裂缝定量预测研究及评价方法.地球学报, 2003, 24(2):175-180. ZHOU X G, DENG H W, CAO C J, et al. The methods for quantitative prediction and evaluation of structural fissures in reservoirs. Acta Geoscientica Sinica, 2003, 24(2):175-180. [27] OU C H, LI C C, HUANG S Y, et al. Three-dimensional discrete network modeling of structural fractures based on the geometric restoration of structure surface:Methodology and its application. Journal of Petroleum Science and Engineering, 2018, 161:417-426. [28] 王志宏, 郝翠果, 李建明, 等.川西前陆盆地超压分布及成因机制.岩性油气藏, 2019, 31(6):36-43. WANG Z H, HAO C G, LI J M, et al. Distribution and genetic mechanism of overpressure in western Sichuan Basin. Lithologic Reservoirs, 2019, 31(6):36-43. [29] 潘荣, 朱筱敏, 王星星, 等.深层有效碎屑岩储层形成机理研究进展.岩性油气藏, 2014, 26(4):73-80. PAN R, ZHU X M, WANG X X, et al. Advancement on formation mechanism of deep effective clastic reservoir. Lithologic Reservoirs, 2014, 26(4):73-80. [30] 郑珊珊, 刘洛夫, 汪洋, 等.川南地区五峰组-龙马溪组页岩微观孔隙结构特征及主控因素. 岩性油气藏, 2019, 31(3):55-65. ZHENG S S, LIU L F, WANG Y, et al. Characteristics of microscopic pore structures and main controlling factors of WufengLongmaxi Formation shale in southern Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):55-65. |
[1] | 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. |
[2] | 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188. |
[3] | 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22. |
[4] | 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168. |
[5] | 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159. |
[6] | 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71. |
[7] | 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130. |
[8] | 张威, 李磊, 邱欣卫, 龚广传, 程琳燕, 高毅凡, 杨志鹏, 杨蕾. A/S对断陷湖盆三角洲时空演化的控制及数值模拟——以珠江口盆地陆丰22洼古近系文昌组为例[J]. 岩性油气藏, 2022, 34(3): 131-141. |
[9] | 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188. |
[10] | 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188. |
[11] | 孙夕平, 张昕, 李璇, 韩永科, 王春明, 魏军, 胡英, 徐光成, 张明, 戴晓峰. 基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J]. 岩性油气藏, 2021, 33(1): 220-228. |
[12] | 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171. |
[13] | 关华, 郭平, 赵春兰, 谭保国, 徐冬梅. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏, 2020, 32(2): 149-160. |
[14] | 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168. |
[15] | 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154. |
|