岩性油气藏 ›› 2020, Vol. 32 ›› Issue (1): 161168.doi: 10.12108/yxyqc.20200118
• 石油工程 • 上一篇
周瑞1, 苏玉亮1, 马兵2, 张琪3, 王文东1
ZHOU Rui1, SU Yuliang1, MA Bing2, ZHANG Qi3, WANG Wendong1
摘要: 目前,非常规储层开采以水平井分段压裂技术为主,而体积压裂会在地下产生诱导裂缝并沟通天然裂缝形成复杂裂缝网络。为了更好地模拟页岩气在地下缝网中的流动情况,以组分模拟器为平台,基于双孔介质模型,结合随机分形几何系统,将复杂裂缝网络与页岩气数值模型耦合,来建立随机分形裂缝网络模型,并基于该模型进一步研究CO2吞吐开采页岩气的5个方案。结果表明:CO2吞吐能够显著提高页岩气的产量,注入压力和注入时间的增加均能提高最终采收率,后者在吞吐开采页岩气的过程中存在最优值,而注入时机过早或过晚都会使生产效果变差,在每个CO2吞吐周期中存在一个最佳注入时机范围。分形裂缝网络模型为深入开展裂缝CO2吞吐开采页岩气藏的模拟研究提供了一定的理论基础。
中图分类号:
[1] 王文东, 苏玉亮, 慕立俊, 等.致密油藏直井体积压裂储层改造体积的影响因素.中国石油大学学报(自然科学版), 2013, 37(3):93-97. WANG W D, SU Y L, MU L J, et al. Influencing factors of stimulated reservoir volume of vertical wells in tight oil reservoirs. Journal of China University of Petroleum(Science & Technology Edition), 2013, 37(3):93-97. [2] DANIELS J L, WATERS G A, LE CALVEZ J H, et al. Contacting more of the Barnett Shale through an integration of real-time microseismic monitoring,petrophysics,and hydraulic fracture design. SPE 110562, 2007. [3] GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bulletin, 2007, 91(4):603-622. [4] FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to improve stimulations in the Barnett shale. SPE Production & Facilities, 2005, 20(2):85-93. [5] HUANG J, SAFARI R, MUTLU U, et al. Natural-hydraulic fracture interaction:Microseismic observations and geomechanical predictions. Unconventional Resources Technology Conference, Denver, Colorado, 2014:1684-1705. [6] MAXWELL S C, STEINSBERGER N, ZINNO R. Microseismicimaging of hydraulic fracture complexity in the Barnett Shale. SPE 77440, 2002. [7] XU W Y, WENG X W, SUN J C, et al. Wiremesh:a novel shale fracturing simulator. SPE 132218, 2010. [8] CHEN Z M, LIAO X W, ZHAO X L, et al. A semianalytical approach for obtaining type curves of multiple-fractured horizontal wells with secondary-fracture networks. SPE Journal, 2016, 21(2):538-549. [9] 陈明强, 王宁, 张阳, 等. 渭北油田浅层油藏产能预测方法.岩性油气藏, 2017, 29(5):134-139. CHEN M Q, WANG N, ZHANG Y, et al. Productivity prediction method of shallow reservoir in Weibei Oilfield. Lithologic Reservoirs, 2017, 29(5):134-139. [10] ZHAO Y S, FENG Z C, LYU Z X, et al. Percolation laws of a fractal fracture-pore double medium. Fractals, 2016, 24(4):1650053. [11] WANG F Y, LIU Z C, JIAO L, et al. A fractal permeability model coupling boundary-layer effect for tight oil reservoirs. Fractals, 2017, 25(5):1750042. [12] WANG W D, SU Y L, YUAN B, et al. Numerical simulation of fluid flow through fractal-based discrete fractured network. Energies, 2018, 11(2):286. [13] ZHOU Z, SU Y, WANG W, et al. Application of the fractal geometry theory on fracture network simulation. Journal of Petroleum Exploration and Production Technology, 2017, 7(2):487-496. [14] YU W, AL-SHALABI E W, SEPEHRNOORI K. A sensitivity study of potential CO2 injection for enhanced gas recovery in Barnett shale reservoirs. SPE 169012, 2014. [15] SUN H, YAO J, GAO S H, et al. Numerical study of CO2 ehanced natural gas recovery and sequestration in shale gas reservoirs. International Journal of Greenhouse Gas Control, 2013, 19:406-419. [16] 李士伦, 汤勇, 侯承希.注CO2提高采收率技术现状及发展趋势.油气藏评价与开发, 2019, 9(3):1-8. LI S L, TANG Y, HOU C X. Present situation and development trend of CO2 injection enhanced oil recovery technology. Reservoir Evaluation and Development, 2019, 9(3):1-8. [17] 胡永乐, 郝明强, 陈国利, 等.中国CO2驱油与埋存技术及实践.石油勘探与开发, 2019, 46(4):716-727. HU Y L, HAO M Q, CHEN G L, et al. Technologies and practice of CO2 flooding and sequestration in China. Petroleum Exploration and Development, 2019, 46(4):716-727. [18] 陈兵, 白世星.二氧化碳输送与封存方式利弊分析.天然气化工(C1化学与化工), 2018, 43(2):114-118. CHEN B, BAI S X. Analysis of the advantages and disadvantages of carbon dioxide transportation and storage. Natural Gas Chemical Industry(C1 Chemistry & Chemical Engineering), 2018, 43(2):114-118. [19] 梁凯强, 王宏, 杨红, 等.延长油田CO2非混相驱地质封存潜力初步评价.断块油气田, 2018, 25(1):89-92. LIANG K Q, WANG H, YANG H, et al. Preliminary evaluation of CO2-EOR geological sequestration potential for Yanchang Oilfield. Fault-Block Oil & Gas Field, 2018, 25(1):89-92. [20] 赵兴雷, 崔倩, 王保登, 等.CO2地质封存项目环境监测评估体系初步研究.环境工程, 2018, 36(2):15-20. ZHAO X L, CUI Q, WANG B D, et al. Preliminary study on environmental monitoring assessment system for CO2 storage projects. Environmental Engineering, 2018, 36(2):15-20. [21] STALGOROVA K, MATTAR L. Analytical model for unconventional multifractured composite systems. SPE Reservoir Evaluation & Engineering, 2013, 16(3):246-256. [22] TALEGHANI D A, OLSON J E. How natural fractures could affect hydraulic-fracture geometry. SPE Journal, 2013, 19(1):161-171. [23] 徐光黎.岩石结构面几何特征的分形与分维.水文地质工程地质, 1993, 20(2):20-22. XU G L. Fractal and fractal dimension of geometric features of rock structural planes. Hydrogeology and Engineering Geology, 1993, 20(2):20-22. [24] LA POINTE P. R. A method to characterize fracture density and connectivity through fractal geometry. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(6):421-429. [25] 丁永胜, 堵秀凤, 张水胜.Matlab分形植物模拟.齐齐哈尔大学学报(自然科学版), 2008, 24(3):63-66. DING Y S, DU X F, ZHANG S S. fractal plant simulation based on Matlab. Journal of Qiqihar University(Natural Science Edition), 2008, 24(3):63-66. [26] HUANG J I, KIM K. Fracture process zone development during hydraulic fracturing. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7):1295-1298. [27] JONES J R, VOLZ R, DJASMARI W. Fracture complexity impacts on pressure transient responses from horizontal wells completed with multiple hydraulic fracture stages. SPE 167120, 2013. [28] VINCENT M C. Optimizing transverse fractures in liquid-rich formations. SPE 146376, 2011. [29] GONG B, QIN G, TOWLER B F, et al. Discrete modeling of natural and hydraulic fractures in shale-gas reservoirs. SPE 146842, 2011. |
[1] | 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. |
[2] | 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14. |
[3] | 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110. |
[4] | 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24. |
[5] | 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108. |
[6] | 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83. |
[7] | 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39. |
[8] | 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188. |
[9] | 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22. |
[10] | 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58. |
[11] | 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70. |
[12] | 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168. |
[13] | 杨跃明, 张少敏, 金涛, 明盈, 郭蕊莹, 王兴志, 韩璐媛. 川南地区二叠系龙潭组页岩储层特征及勘探潜力[J]. 岩性油气藏, 2023, 35(1): 1-11. |
[14] | 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159. |
[15] | 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71. |
|