岩性油气藏 ›› 2020, Vol. 32 ›› Issue (1): 161–168.doi: 10.12108/yxyqc.20200118

• 石油工程 • 上一篇    

随机分形体积压裂水平井CO2吞吐模拟

周瑞1, 苏玉亮1, 马兵2, 张琪3, 王文东1   

  1. 1. 中国石油大学(华东)石油工程学院, 山东 青岛 266580;
    2. 中国石油长庆油田分公司 油气工艺研究院, 西安 710018;
    3. 中国地质大学(武汉)资源学院, 武汉 430074
  • 收稿日期:2019-05-07 修回日期:2019-08-27 出版日期:2020-01-21 发布日期:2019-11-22
  • 作者简介:周瑞(1996-),男,中国石油大学(华东)在读硕士研究生,研究方向为非常规油气渗流与开发、复杂缝网数值模拟表征方法等。地址:(266580)山东省青岛市黄岛区长江西路66号中国石油大学(华东)石油工程学院。Email:S17020236@upc.edu.cn。
  • 基金资助:
    国家自然科学基金项目“页岩油多尺度运移机制及数值模拟”(编号:51674279)、“页岩油微观运移机理与可流动性评价”(编号:51804328)和山东省自然科学基金项目“强非均质页岩多孔介质尺度升级方法研究”(编号:ZR2019PEE039)联合资助

CO2 huff and puff simulation in horizontal well with random fractal volume fracturing

ZHOU Rui1, SU Yuliang1, MA Bing2, ZHANG Qi3, WANG Wendong1   

  1. 1. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. Research Institute of Oil and Gas Technology, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    3. School of Earth Resources, China University of Geosciences(Wuhan), Wuhan 430074, China
  • Received:2019-05-07 Revised:2019-08-27 Online:2020-01-21 Published:2019-11-22

摘要: 目前,非常规储层开采以水平井分段压裂技术为主,而体积压裂会在地下产生诱导裂缝并沟通天然裂缝形成复杂裂缝网络。为了更好地模拟页岩气在地下缝网中的流动情况,以组分模拟器为平台,基于双孔介质模型,结合随机分形几何系统,将复杂裂缝网络与页岩气数值模型耦合,来建立随机分形裂缝网络模型,并基于该模型进一步研究CO2吞吐开采页岩气的5个方案。结果表明:CO2吞吐能够显著提高页岩气的产量,注入压力和注入时间的增加均能提高最终采收率,后者在吞吐开采页岩气的过程中存在最优值,而注入时机过早或过晚都会使生产效果变差,在每个CO2吞吐周期中存在一个最佳注入时机范围。分形裂缝网络模型为深入开展裂缝CO2吞吐开采页岩气藏的模拟研究提供了一定的理论基础。

关键词: 页岩气, 体积压裂, 分形几何, CO2吞吐, 数值模拟

Abstract: At present,the horizontal drilling with large-scale hydraulic fracturing is the main technology to mine shale gas while volumetric fracturing would induce cracks underground and communicate natural cracks to form complex fracture networks eventually. In order to simulate the seepage flow of shale gas in the complex fracture network and characterize the network on the shale gas model,a random fractal network model was established through a two-porosity component simulator combined with the random fractal geometry system. Based on the above model,five schemes for carbon dioxide stimulation to extract shale gas were further studied. The results show that CO2 huff and puff can significantly increase the production of shale gas,and the increase of injection pressure and injection time can improve the ultimate recovery. The latter has the optimal value in the process of shale gas production,and too early or too late injection timing will make the production worse,and there is an optimal injection timing range in each CO2 injection cycle. The fractal fracture network model provides a theoretical basis for further research on the simulation of fracture CO2 huff and puff production of shale gas reservoir.

Key words: shale gas, volumetric fracturing, fractal geometry, CO2 huff and puff, numerical simulation

中图分类号: 

  • TE357
[1] 王文东, 苏玉亮, 慕立俊, 等.致密油藏直井体积压裂储层改造体积的影响因素.中国石油大学学报(自然科学版), 2013, 37(3):93-97. WANG W D, SU Y L, MU L J, et al. Influencing factors of stimulated reservoir volume of vertical wells in tight oil reservoirs. Journal of China University of Petroleum(Science & Technology Edition), 2013, 37(3):93-97.
[2] DANIELS J L, WATERS G A, LE CALVEZ J H, et al. Contacting more of the Barnett Shale through an integration of real-time microseismic monitoring,petrophysics,and hydraulic fracture design. SPE 110562, 2007.
[3] GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bulletin, 2007, 91(4):603-622.
[4] FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture mapping technologies to improve stimulations in the Barnett shale. SPE Production & Facilities, 2005, 20(2):85-93.
[5] HUANG J, SAFARI R, MUTLU U, et al. Natural-hydraulic fracture interaction:Microseismic observations and geomechanical predictions. Unconventional Resources Technology Conference, Denver, Colorado, 2014:1684-1705.
[6] MAXWELL S C, STEINSBERGER N, ZINNO R. Microseismicimaging of hydraulic fracture complexity in the Barnett Shale. SPE 77440, 2002.
[7] XU W Y, WENG X W, SUN J C, et al. Wiremesh:a novel shale fracturing simulator. SPE 132218, 2010.
[8] CHEN Z M, LIAO X W, ZHAO X L, et al. A semianalytical approach for obtaining type curves of multiple-fractured horizontal wells with secondary-fracture networks. SPE Journal, 2016, 21(2):538-549.
[9] 陈明强, 王宁, 张阳, 等. 渭北油田浅层油藏产能预测方法.岩性油气藏, 2017, 29(5):134-139. CHEN M Q, WANG N, ZHANG Y, et al. Productivity prediction method of shallow reservoir in Weibei Oilfield. Lithologic Reservoirs, 2017, 29(5):134-139.
[10] ZHAO Y S, FENG Z C, LYU Z X, et al. Percolation laws of a fractal fracture-pore double medium. Fractals, 2016, 24(4):1650053.
[11] WANG F Y, LIU Z C, JIAO L, et al. A fractal permeability model coupling boundary-layer effect for tight oil reservoirs. Fractals, 2017, 25(5):1750042.
[12] WANG W D, SU Y L, YUAN B, et al. Numerical simulation of fluid flow through fractal-based discrete fractured network. Energies, 2018, 11(2):286.
[13] ZHOU Z, SU Y, WANG W, et al. Application of the fractal geometry theory on fracture network simulation. Journal of Petroleum Exploration and Production Technology, 2017, 7(2):487-496.
[14] YU W, AL-SHALABI E W, SEPEHRNOORI K. A sensitivity study of potential CO2 injection for enhanced gas recovery in Barnett shale reservoirs. SPE 169012, 2014.
[15] SUN H, YAO J, GAO S H, et al. Numerical study of CO2 ehanced natural gas recovery and sequestration in shale gas reservoirs. International Journal of Greenhouse Gas Control, 2013, 19:406-419.
[16] 李士伦, 汤勇, 侯承希.注CO2提高采收率技术现状及发展趋势.油气藏评价与开发, 2019, 9(3):1-8. LI S L, TANG Y, HOU C X. Present situation and development trend of CO2 injection enhanced oil recovery technology. Reservoir Evaluation and Development, 2019, 9(3):1-8.
[17] 胡永乐, 郝明强, 陈国利, 等.中国CO2驱油与埋存技术及实践.石油勘探与开发, 2019, 46(4):716-727. HU Y L, HAO M Q, CHEN G L, et al. Technologies and practice of CO2 flooding and sequestration in China. Petroleum Exploration and Development, 2019, 46(4):716-727.
[18] 陈兵, 白世星.二氧化碳输送与封存方式利弊分析.天然气化工(C1化学与化工), 2018, 43(2):114-118. CHEN B, BAI S X. Analysis of the advantages and disadvantages of carbon dioxide transportation and storage. Natural Gas Chemical Industry(C1 Chemistry & Chemical Engineering), 2018, 43(2):114-118.
[19] 梁凯强, 王宏, 杨红, 等.延长油田CO2非混相驱地质封存潜力初步评价.断块油气田, 2018, 25(1):89-92. LIANG K Q, WANG H, YANG H, et al. Preliminary evaluation of CO2-EOR geological sequestration potential for Yanchang Oilfield. Fault-Block Oil & Gas Field, 2018, 25(1):89-92.
[20] 赵兴雷, 崔倩, 王保登, 等.CO2地质封存项目环境监测评估体系初步研究.环境工程, 2018, 36(2):15-20. ZHAO X L, CUI Q, WANG B D, et al. Preliminary study on environmental monitoring assessment system for CO2 storage projects. Environmental Engineering, 2018, 36(2):15-20.
[21] STALGOROVA K, MATTAR L. Analytical model for unconventional multifractured composite systems. SPE Reservoir Evaluation & Engineering, 2013, 16(3):246-256.
[22] TALEGHANI D A, OLSON J E. How natural fractures could affect hydraulic-fracture geometry. SPE Journal, 2013, 19(1):161-171.
[23] 徐光黎.岩石结构面几何特征的分形与分维.水文地质工程地质, 1993, 20(2):20-22. XU G L. Fractal and fractal dimension of geometric features of rock structural planes. Hydrogeology and Engineering Geology, 1993, 20(2):20-22.
[24] LA POINTE P. R. A method to characterize fracture density and connectivity through fractal geometry. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(6):421-429.
[25] 丁永胜, 堵秀凤, 张水胜.Matlab分形植物模拟.齐齐哈尔大学学报(自然科学版), 2008, 24(3):63-66. DING Y S, DU X F, ZHANG S S. fractal plant simulation based on Matlab. Journal of Qiqihar University(Natural Science Edition), 2008, 24(3):63-66.
[26] HUANG J I, KIM K. Fracture process zone development during hydraulic fracturing. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7):1295-1298.
[27] JONES J R, VOLZ R, DJASMARI W. Fracture complexity impacts on pressure transient responses from horizontal wells completed with multiple hydraulic fracture stages. SPE 167120, 2013.
[28] VINCENT M C. Optimizing transverse fractures in liquid-rich formations. SPE 146376, 2011.
[29] GONG B, QIN G, TOWLER B F, et al. Discrete modeling of natural and hydraulic fractures in shale-gas reservoirs. SPE 146842, 2011.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[3] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[4] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[5] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[6] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[7] 刘博, 徐刚, 纪拥军, 魏路路, 梁雪莉, 何金玉. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32(6): 172-180.
[8] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[9] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[10] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[11] 关华, 郭平, 赵春兰, 谭保国, 徐冬梅. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏, 2020, 32(2): 149-160.
[12] 王登, 余江浩, 赵雪松, 陈威, 黄佳琪, 徐聪. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景[J]. 岩性油气藏, 2020, 32(1): 27-35.
[13] 卞晓冰, 侯磊, 蒋廷学, 高东伟, 张驰. 深层页岩裂缝形态影响因素[J]. 岩性油气藏, 2019, 31(6): 161-168.
[14] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[15] 陈相霖, 郭天旭, 石砥石, 侯啓东, 王超. 陕南地区牛蹄塘组页岩孔隙结构特征及吸附能力[J]. 岩性油气藏, 2019, 31(5): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .