岩性油气藏 ›› 2021, Vol. 33 ›› Issue (6): 177–188.doi: 10.12108/yxyqc.20210618

• 油气田开发 • 上一篇    

鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征

张皓宇1,2, 李茂1, 康永梅3, 吴泽民3, 王广3   

  1. 1. 西安石油大学 石油工程学院, 西安 710065;
    2. 陕西省油气井及储层渗流与岩石力学重点实验室·西安石油大学, 西安 710065;
    3. 中国石油长庆油田分公司 第十一采油厂, 甘肃 庆阳 745000
  • 收稿日期:2021-03-07 修回日期:2021-06-18 出版日期:2021-12-01 发布日期:2021-11-25
  • 第一作者:张皓宇(1987-),男,西安石油大学在读博士研究生,工程师,主要从事油气藏数值模拟及非常规油气储层改造研究工作。地址:(710065)陕西省西安市电子二路东段18号西安石油大学陕西省油气井及储层渗流与岩石力学重点实验室。Email:zhyfly-1987@qq.com。
  • 基金资助:
    国家自然科学基金项目“陆相页岩井周天然裂隙力学活动性评价方法基础研究”(编号:51874239)资助

Reservoir architecture and fine characterization of remaining oil of Chang 3 reservoir in Zhenbei oilfield,Ordos Basin

ZHANG Haoyu1,2, LI Mao1, KANG Yongmei3, WU Zemin3, WANG Guang3   

  1. 1. College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    2. Shaanxi Key Laboratory of Well Stability and Fluid & Rock Mechanics in Oil and Gas Reservoirs, Xi'an Shiyou University, Xi'an 710065, China;
    3. No. 11 Oil Production Plant, PetroChina Changqing Oilfield Company, Qingyang 745000, Gansu, China
  • Received:2021-03-07 Revised:2021-06-18 Online:2021-12-01 Published:2021-11-25

摘要: 镇北油田镇300井区长3油层组目前已进入特高含水期,层间非均质性强,吸水不均井占测试总井数的48%,为了提供建产方向,急需进一步刻画剩余油分布。利用经典的构型分析方法,结合具有沉积单元和渗流单元双重特性的复合砂体韵律特征和渗流规律,总结了研究区长3油层组4种垂向叠置样式、5种平面接触关系并明确测井识别标志。最后利用油藏数值模拟和生产动态结合的方法明确指出2种剩余油控制因素。研究结果表明:注采井网的不完善,是造成孤立式和分离式叠置关系单砂体剩余油的主要因素;切叠式单砂体剩余油主要集中在砂体顶部;间湾接触的单砂体易造成河道侧翼剩余油富集;得益于较好的连通性和较高的水驱效率,替代式和侧切式接触关系砂体不富集剩余油;对接式接触的单砂体连通关系复杂,单一的判别方式易造成注采不对应,进而形成局部剩余油。该研究成果能兼顾储层构型对油藏剩余油的控制作用和流动单元的渗流特性,可有效指导油藏注采井网部署,为油田后期注水开发方案的调整提供了新的思路。

关键词: 单砂体, 储层构型, 流动单元, 油藏数值模拟, 剩余油模型

Abstract: Chang 3 reservoir in well area Zhen 300 in Zhenbei oilfield has entered ultra-high water cut stage, with strong interlayer heterogeneity, and the wells with uneven water absorption accounted for 48% of the total number of tested wells. In order to provide direction for production, it is urgent to further characterize the remaining oil distribution. By using classic architecture analysis methods, combined with rhythm characteristics and seepage laws of composite sand bodies being with dual characteristics of sedimentary unit and seepage unit, four vertical superimposed styles and five plane contact relationships of Chang 3 reservoir in the study area were summarized, and logging identification marks were clearly defined. Two remaining oil controlling factors were clearly pointed out by using the combination of reservoir numerical simulation and production performance. The results show that the imperfect injection-production well pattern is the main factor causing the remaining oil in the isolated and separated superimposed single sand body. The remaining oil in the cutting and stacked single sand body is mainly concentrated at the top of the sand body. The single sand body contacted with the bay are likely to cause the enrichment of remaining oil in the flanks of the river channel. Due to the good connectivity and high water drive efficiency, the alternative and side-cut contact sand bodies are not enriched with remaining oil. The connection relationship of butt-joint single sand body is complex, and a single discriminant method is easy to cause mismatch between injection and production, and then form local remaining oil. The research result takes into account the control effect of reservoir architecture on the remaining oil and the seepage characteristics of the flow units, so it can effectively guide the deployment of reservoir injection and production well pattern, and provide new ideas for the adjustment of the subsequent water injection development of the oilfield.

Key words: single sand body, reservoir architecture, flow unit, reservoir numerical simulation, remaining oil model

中图分类号: 

  • TE122
[1] 任双坡, 姚光庆, 毛文静. 三角洲前缘水下分流河道薄层单砂体成因类型及其叠置模式:以古城油田泌浅10区核三段Ⅳ-Ⅵ油组为例. 沉积学报, 2016, 34(3):582-593. REN S P, YAO G Q, MAO W J. Genetic types and superimposition patterns of subaqueous distributary channel thin sandbodies in delta front:A case study from the Ⅳ-Ⅵ reservoir groups of H3 in Biqian 10 area of Gucheng oilfield. Acta Sedimentologica Sinica, 2016, 34(3):582-593.
[2] 胡光义, 陈飞, 范廷恩, 等. 渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析. 沉积学报, 2014, 32(3):586-592. HU G Y, CHEN F, FAN T E, et al. Analysis of fluvial facies compound sandbody architecture of the Neogene Minghuazhen Formation of S oilfield in the Bohai Bay. Acta Sedimentologica Sinica, 2014, 32(3):586-592.
[3] 封从军, 鲍志东, 单启铜, 等. 三角洲平原复合分流河道内部单砂体划分:以扶余油田中区南部泉头组四段为例. 石油与天然气地质, 2012, 33(1):77-83. FENG C J, BAO Z D, SHAN Q T, et al. Single sand body identification in compound distributary channel of delta plain:A case study from the fourth member of Quantou Formation in the southern part of central Fuyu oilfield. Oil & Gas Geology, 2012, 33(1):77-83.
[4] 田景春, 张兴良, 王峰, 等. 鄂尔多斯盆地高桥地区上古生界储集砂体叠置关系及分布定量刻画. 石油与天然气地质, 2013, 34(6):737-742. TIAN J C, ZHANG X L, WANG F, et al. Quantitative characterization of superimposition relationship and distribution of reservoir sandbodies in the Upper Paleozoic of Gaoqiao region, the Ordos Basin. Oil & Gas Geology, 2013, 34(6):737-742.
[5] 张玉攀. 复合水下分流河道砂体精细刻画在姬黄32区块长811油藏开发中的应用. 中国矿业, 2020, 29(增刊1):436-440. ZHANG Y P. Application of fine description of composite underwater distributary channel sand in the development of Yanchang group 811 reservoir, Jihuang 32 block. China Mining Magazine, 2020, 29(Suppl 1):436-440.
[6] 张瑞, 刘宗宾, 田博, 等. 渤海SZ油田井间单砂体连通性判别及定量评价. 地质科技情报, 2018, 37(5):78-83. ZHANG R, LIU Z B, TIAN B, et al. Identification and quantitative evaluation of interwell single sandbody connectivity of SZ oilfield in Bohai Sea. Geological Science and Technology Information, 2018, 37(5):78-83.
[7] 张建兴, 林承焰, 张宪国, 等. 基于储层构型与油藏数值模拟的点坝储层剩余油分布研究. 岩性油气藏, 2017, 29(4):146-153. ZHANG J X, LIN C Y, ZHANG X G, et al. Remaining oil distribution of point bar reservoir based on reservoir architecture and reservoir numerical simulation. Lithologic Reservoirs, 2017, 29(4):146-153.
[8] MIALL A D. Architectural-element analysis:A new method of facies analysis applied to fluvial deposits. Earth-Science Reviews, 1985, 22:261-308.
[9] 李夔洲, 侯明才, 陈安清, 等. 鄂尔多斯盆地镇北地区长3油层组物源及沉积体系. 成都理工大学学报(自然科学版), 2016, 43(2):216-223. LI K Z, HOU M C, CHEN A Q, et al. The provenance and depositional systems of the Upper Triassic Chang-3 oil formation in Zhenbei area, Ordos Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(2):216-223.
[10] 郭艳琴, 惠磊, 张秀能, 等. 鄂尔多斯盆地三叠系延长组沉积体系特征及湖盆演化. 西北大学学报(自然科学版), 2018, 48(4):593-602. GUO Y Q, HUI L, ZHANG X N, et al. Sedimentary system characteristics and lake basin evolution of Triassic Yanchang Formation in Ordos Basin. Journal of Northwest University (Natural Science Edition), 2018, 48(4):593-602.
[11] 王桂成, 曹聪. 鄂尔多斯盆地下寺湾油田长3油层组储层特征及控藏机理. 岩性油气藏, 2019, 31(3):1-9. WANG G C, CAO C. Characteristics and reservoir-control mechanism of Chang 3 reservoir in Xiasiwan oilfield, Ordos Basin. Lithologic Reservoirs, 2019, 31(3):1-9.
[12] 张金亮, 司学强, 秦敬. 安塞油田王窑地区长6油层沉积微相研究. 西北地质, 2003, 36(3):62-71. ZHANG J L, SI X Q, QIN J. Sedimentary microfacies of the Chang-6 reservoir of Yanchang Formation in Wangyao district, Ansai oilfield. Northwestern Geology, 2003, 36(3):62-71.
[13] 尹泽, 刘自亮, 彭楠, 等. 鄂尔多斯盆地西缘上三叠统延长组沉积相特征研究. 沉积学报, 2019, 37(1):163-176. YIN Z, LIU Z L, PENG N, et al. Study on sedimentary facies features of the Upper Triassic Yanchang Formation, in the western margin, Ordos Basin. Acta Sedimentologica Sinica, 2019, 37(1):163-176.
[14] 邓猛, 邵英博, 赵军寿, 等. 渤海A油田明化镇组下段河-坝砂体储层构型及剩余油分布. 岩性油气藏, 2020, 32(6):154-163. DENG M, SHAO Y B, ZHAO J S, et al. Reservoir architecture and remaining oil distribution of channel-bar:A case from lower Minghuazhen Formation in Bohai A oilfield. Lithologic Reservoirs, 2020, 32(6):154-163.
[15] 罗晓彤, 文华国, 彭才, 等. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分. 岩性油气藏, 2020, 32(3):68-81. LUO X T, WEN H G, PENG C, et al. Sedimentary characteristics and high-precision sequence division of lacustrine carbonate rocks of BV Formation in L oilfield of Santos Basin, Brazil. Lithologic Reservoirs, 2020, 32(3):68-81.
[16] 常海燕, 严耀祖, 陈更新, 等. 近岸水下扇储层构型及剩余油分布模式:以柴达木盆地七个泉油田E31油藏为例. 岩性油气藏, 2018, 30(3):143-152. CHANG H Y, YAN Y Z, CHEN G X, et al. Reservoir configuration and remaining oil distribution patterns of nearshore subaqueous fan:A case from E31 reservoir in Qigequan oilfield, Qaidam Basin. Lithologic Reservoirs, 2018, 30(3):143-152.
[17] 韩雪芳, 颜冠山, 刘宗宾, 等. 三角洲前缘水下分流河道及河口坝储层构型研究:以J油田东二下段为例. 复杂油气藏, 2016, 9(4):37-41. HAN X F, YAN G S, LIU Z B, et al. Reservoir architecture analysis of underwater distributary channel and mouth bar in delta front:E3d2L in J oilfield taken as an example. Complex Hydrocarbon Reservoirs, 2016, 9(4):37-41.
[18] 封从军, 鲍志东, 代春明, 等. 三角洲前缘水下分流河道单砂体叠置机理及对剩余油的控制:以扶余油田J19区块泉头组四段为例. 石油与天然气地质, 2015, 36(1):128-135. FENG C J, BAO Z D, DAI C M, et al. Superimposition patterns of underwater distributary channel sands in deltaic front and its control on remaining oil distribution:A case study from K1q4 in J19 block, Fuyu oilfield. Oil & Gas Geology, 2015, 36(1):128-135.
[19] 林承焰, 孙廷彬, 董春梅, 等. 基于单砂体的特高含水期剩余油精细表征. 石油学报, 2013, 34(6):1131-1136. LIN C Y, SUN T B, DONG C M, et al. Fine characterization of remaining oil based on a single sand body in the high water cut period. Acta Petrolei Sinica, 2013, 34(6):1131-1136.
[20] 胡光义, 范廷恩, 陈飞, 等. 复合砂体构型理论及其生产应用. 石油与天然气地质, 2018, 39(1):1-10. HU G Y, FAN T E, CHEN F, et al. Theory of composite sand body architecture and its application to oilfield development. Oil & Gas Geology, 2018, 39(1):1-10.
[21] 陈欢庆, 胡永乐, 闫林, 等. 储层流动单元研究进展. 地球学报, 2010, 31(6):875-884. CHEN H Q, HU Y L, YAN L, et al. Advances in the study of reservoir flow unit. Acta Geoscientica Sinica, 2010, 31(6):875-884.
[22] 陈志强, 吴思源, 白蓉, 等. 基于流动单元的致密砂岩气储层渗透率测井评价:以川中广安地区须家河组为例. 岩性油气藏, 2017, 29(6):76-83. CHEN Z Q, WU S Y, BAI R, et al. Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:A case from Xujiahe Formation in Guang'an area, central Sichuan Basin. Lithologic Reservoirs, 2017, 29(6):76-83.
[23] 吕明针, 林承焰, 张宪国, 等. 储层流动单元划分方法评价及优选. 岩性油气藏, 2015, 27(1):74-80. LYU M Z, LIN C Y, ZHANG X G, et al. Evaluation and optimization of flow unit division methods. Lithologic Reservoirs, 2015, 27(1):74-80.
[24] 熊光勤, 刘丽. 基于储层构型的流动单元划分及对开发的影响. 西南石油大学学报(自然科学版), 2014, 36(3):107-114. XIONG G Q, LIU L. Flow units classification based on reservoir architecture and its influence on reservoir development. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(3):107-114.
[25] 陈欢庆, 张虎俊, 隋宇豪. 油田开发中后期精细油藏描述研究内容特征. 中国石油勘探, 2018, 23(3):115-128. CHEN H Q, ZHANG H J, SUI Y H. Research characteristics of fine reservoir description in middle and late oilfield development. China Petroleum Exploration, 2018, 23(3):115-128.
[26] 颜冠山, 刘宗宾, 宋洪亮, 等. 海上三角洲相油田剩余油控制因素及挖潜:以渤海湾盆地JZ油田为例. 断块油气田, 2018, 25(5):598-603. YAN G S, LIU Z B, SONG H L, et al. Remaining oil control factors and potential digging in offshore delta oilfield:Taking JZ oilfield in Bohai Bay Basin as an example. Fault-Block Oil & Gas Field, 2018, 25(5):598-603.
[1] 王亚, 刘宗宾, 路研, 王永平, 刘超. 基于SSOM的流动单元划分方法及生产应用——以渤海湾盆地F油田古近系沙三中亚段湖底浊积水道为例[J]. 岩性油气藏, 2024, 36(2): 160-169.
[2] 尹艳树, 丁文刚, 安小平, 徐振华. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 2023, 35(4): 37-49.
[3] 芦凤明, 蔡明俊, 张阳, 倪天禄, 萧希航. 碎屑岩储层构型分级方案与研究方法探讨[J]. 岩性油气藏, 2020, 32(6): 1-11.
[4] 邓猛, 邵英博, 赵军寿, 廖辉, 邓琪. 渤海A油田明化镇组下段河-坝砂体储层构型及剩余油分布[J]. 岩性油气藏, 2020, 32(6): 154-163.
[5] 何康, 张鹏志, 周军良, 甘立琴, 舒晓. 复合曲流带内部构型界面识别新方法及其应用[J]. 岩性油气藏, 2020, 32(4): 126-135.
[6] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[7] 常海燕, 严耀祖, 陈更新, 郭宁, 项燚伟, 杨会洁. 近岸水下扇储层构型及剩余油分布模式——以柴达木盆地七个泉油田E31油藏为例[J]. 岩性油气藏, 2018, 30(3): 143-152.
[8] 刘化清, 苏明军, 倪长宽, 洪忠, 崔向丽, 胡凯峰, 李政阳, 毛俊丽. 薄砂体预测的地震沉积学研究方法[J]. 岩性油气藏, 2018, 30(2): 1-11.
[9] 陈志强, 吴思源, 白蓉, 雷刚. 基于流动单元的致密砂岩气储层渗透率测井评价——以川中广安地区须家河组为例[J]. 岩性油气藏, 2017, 29(6): 76-83.
[10] 岳世俊, 郑长龙, 杨兆平, 景紫岩, 刘雄志, 金保中. 枚举平衡法在油藏数值模拟初始化中的应用[J]. 岩性油气藏, 2017, 29(6): 142-147.
[11] 刘超, 李云鹏, 张伟, 冯海潮, 王颍超. 渤海海域A油田夹层控制下的剩余油分布模式[J]. 岩性油气藏, 2017, 29(5): 148-154.
[12] 张建兴, 林承焰, 张宪国, 孙志峰, 陈家昀. 基于储层构型与油藏数值模拟的点坝储层剩余油分布研究[J]. 岩性油气藏, 2017, 29(4): 146-153.
[13] 李岩. 扇三角洲前缘储层构型及其控油作用——以赵凹油田赵凹区块核桃园组三段Ⅳ31厚油层为例[J]. 岩性油气藏, 2017, 29(3): 132-139.
[14] 周游, 李治平, 景成, 谷潇雨, 孙威, 李晓. 基于“岩石物理相-流动单元”测井响应定量评价特低渗透油藏优质储层——以延长油田东部油区长6油层组为例[J]. 岩性油气藏, 2017, 29(1): 116-123.
[15] 孙雨,董毅明,王继平,马世忠,于利民,闫百泉. 松辽盆地红岗北地区扶余油层储层单砂体分布模式[J]. 岩性油气藏, 2016, 28(4): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .