岩性油气藏 ›› 2020, Vol. 32 ›› Issue (4): 126–135.doi: 10.12108/yxyqc.20200413

• 油气田开发 • 上一篇    下一篇

复合曲流带内部构型界面识别新方法及其应用

何康, 张鹏志, 周军良, 甘立琴, 舒晓   

  1. 中海石油(中国)有限公司天津分公司 渤海石油研究院, 天津 300452
  • 收稿日期:2019-06-12 修回日期:2019-12-16 出版日期:2020-08-01 发布日期:2020-06-16
  • 第一作者:何康(1985-),男,硕士,工程师,主要从事油田开发地质方面的意见工作。地址:(300452)天津市滨海新区海川路2121号渤海石油管理局B座渤海石油研究院。Email:hekang@cnooc.com.cn。
  • 基金资助:
    国家科技重大专项“渤海‘双高’油田挖潜关键技术研究”(编号:YXKY-2018-TJ-04)资助

New method of recognizing architecture interfaces of complex meander belt deposition and its application

HE Kang, ZHANG Pengzhi, ZHOU Junliang, GAN Liqin, SHU Xiao   

  1. Bohai Oilfield Research Institute, Tianjin Branch of CNOOC China Limited, Tianjin 300459, China
  • Received:2019-06-12 Revised:2019-12-16 Online:2020-08-01 Published:2020-06-16

摘要: 为了刻画海上油田复合曲流带砂体储层结构,分析生产井组平面注水受效不均的地质因素,提出有效增产措施。以渤海Q油田北区NmⅢ2含油砂体为目标砂体,首先基于井间剖面相分析,建立9种单河道间切叠类型,通过正演模拟识别不同切叠类型的地震响应特征;再依据地震响应强度,采用单一振幅属性和双属性融合技术,对地震响应强度的切叠界面进行准确定位;最后结合井间剖面相分析定微相、古地貌特征定走向、单砂体厚度分布及构型定量方法定规模等,完成对复合曲流带内部不同单河道间切叠界面(内部构型界面)的识别与刻画。结果表明:曲流带内部单河道间的切叠界面将片状砂体分割为多个不同的连通体或半连通体,不同的切叠类型渗流能力有所不同。该研究成果能够对复合曲流带砂体注采结构优化提供可靠的地质依据。

关键词: 单砂体刻画, 内部构型, 正演模拟, 属性融合技术, 古地貌分析, 构型界面

Abstract: In order to propose effective stimulation measures,it is necessary to find a new method to depict the sand reservoir structure of complex meander belt and study the geological factors of uneven efficiency of horizontal water injection in production well group in offshore oilfield. This paper took the oil-bearing sand body NmⅢ2 of Q oilfield in Bohai for example to introduce a new reservoir architecture method. First,nine different cutting relations between every two rivers were concluded by classical meandering stream and the result of micro-facies correlation among the wells. Through combined seismic record obtained from seismic forward modeling,we found that different cutting relations make different seismic wave features. Second,the different intensity of cutting results in the different strength of seismic response. So,we tried to use a single amplitude attribute and dual seismic attribute fusion technology to locate all these different cutting relations accurately. Last,on the basis of the works above, combined with the restoring ancient landscape,the prediction of sand body thickness and configurational formula, precise recognition of architecture interfaces of complex meander belt deposition would be realized. The results show that the meander belt sand bodies were divided into several different connective or semi-connective bodies by the architecture interfaces. It is recognized that the permeability of the different cutting relations is different. The research results can provide reliable geologic accordance for optimizing injection-production structure.

Key words: characterization of single sand body, internal configuration, forward modeling, attribute fusion technology, paleogeomorphological analysis, architecture interfaces

中图分类号: 

  • TE121.3
[1] 李宗奇, 林承焰, 张宪国, 等. 孤东油田七区西Ng52+3层曲流河储层构型表征碎屑岩系油气储层沉积学.东北石油大学学报, 2017, 41(5):70-82. LI Z Q, LIN C Y, ZHANG X G, et al. Architectural characterization of meandering river reservoir of the unit Ng52+3 in the west 7th block of Gudong Oilfield. Journal of Northeast Petroleum University, 2017, 41(5):70-82.
[2] MIALL A D. The geology of fluvial deposits-sedimentary:Facies, basin analysis and petroleum geology. Berlin:SpringerVerlag, 1996:99-250.
[3] 李志华, 黄文辉. 辫状河三角洲岩相特征及沉积模式:以鄂尔多斯盆地苏南地区盒8段为例.岩性油气藏, 2017, 29(2):43-50. LI Z H, HUANG W H. Lithofacies characteristics and sedimentary model of braided delta:a case study of He 8 member in the southern Sulige, Ordos Basin. Lithologic Reservoirs, 2017, 29(2):43-50.
[4] 汪巍, 侯东梅, 马佳国, 等. 海上油田高弯度曲流河储层构型表征:以渤海曹妃甸11-1油田主力砂体Lm943为例.中国海上油气, 2016, 28(4):55-62. WANG W, HOU D M, MA J G, et al. Research architecture characterization of high sinuosity meandering river in offshore oilfields:a case study of Lm943 main sand body of CFD 11-1 oilfield in Bohai Sea. China Offshore Oil and Gas, 2016, 28(4):55-62.
[5] 张运来, 廖新武, 胡勇, 等. 海上稠油油田高含水期开发模式研究.岩性油气藏, 2018, 30(4):120-126. ZHANG Y L, LIAO X W, HU Y, et al. Development models for offshore heavy oil field in high water cut stage. Lithologic Reservoirs, 2018, 30(4):120-126.
[6] 陈飞, 胡光义, 胡宇霆, 等.储层构型研究发展历程与趋势思考. 西南石油大学学报(自然科学版), 2018, 40(5):1-14. CHEN F, HU G Y, HU Y T, et al. Development history and future trends in reservoir architecture research. Journal of Southwest Petroleum University(Science & Technology Edition), 2018, 40(5):1-14.
[7] 甘立琴, 苏进昌, 谢岳, 等. 曲流河储层隔夹层研究:以秦皇岛32-6油田为例.岩性油气藏, 2017, 29(6):128-134. GAN L Q, SU J C, XIE Y, et al. Interlayers of meandering river reservoir:a case from Qinhuangdao 32-6 oilfield. Lithologic Reservoirs, 2017, 29(6):128-134.
[8] 王华超, 韩登林, 欧阳传湘, 等. 库车坳陷北部阿合组致密砂岩储层特征及主控因素.岩性油气藏, 2019, 31(3):1-9. WANG H C, HAN D L, OUYANG C X, et al. Characteristics and main controlling factors of tight sandstone reservoir of Ahe Formation in northern Kuqa Depression. Lithologic Reservoirs, 2019, 31(3):1-9.
[9] 周银邦, 吴胜和, 计秉玉, 等. 曲流河储层构型表征研究进展. 地球科学进展, 2011, 26(7):695-702. ZHOU Y B, WU S H, JI B Y, et al. Research progress on the characterization of fluvial reservoir architecture. Advances in Earth Science, 2011, 26(7):695-702.
[10] 岳大力, 吴胜和, 谭河清, 等. 曲流河古河道储层构型精细解剖:以孤东油田七区西馆陶组为例.地学前缘, 2008, 15(1):101-109. YUE D L, WU S H, TAN H Q, et al. An anatomy of paleochannel reservoir architecture of meandering river reservoir:a case study of Guantao Formation, the west 7th block of Gudong Oilfield. Earth Science Frontiers, 2008, 15(1):101-109.
[11] 岳大力, 吴胜和, 刘建民. 曲流河点坝地下储层构型精细解剖方法.石油学报, 2007, 28(4):99-103. YUE D L, WU S H, LIU J M. An accurate method for anatomizing architecture of subsurface reservoir in point bar of meandering river. Acta Petrolei Sinica, 2007, 28(4):99-103.
[12] 岳大力, 吴胜和, 程会明, 等. 基于三维储层构型模型的油藏数值模拟及剩余油分布模式.中国石油大学学报:自然科学版, 2008, 32(2):21-27. YUE D L, WU S H, CHENG H M, et al. Numerical reservoir simulation and remaining oil distribution patterns based on 3 D reservoir architecture model. Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(2):21-27.
[13] 崔龙涛, 冯栋, 秦雁群, 等. 鄂尔多斯盆地镇北地区延长组长7古地貌与砂体分布特征.岩性油气藏, 2013, 25(5):65-69. CUI L T, FENG D, QIN Y Q, et al. Palaeogeomorphology reconstruction and sand body distribution of Chang 7 reservoir in Zhenbei area, Ordos Basin. Lithologic Reservoirs, 2013, 25(5):65-69.
[14] 曹跃, 刘延哲, 陈义国, 等. 鄂尔多斯盆地东韩油区延长组长7-长9油气成藏条件及主控因素.岩性油气藏, 2018, 30(1):30-38. CAO Y, LIU Y Z, CHEN Y G, et al. Hydrocarbon accumulation conditions and main controlling factors of Chang 7-Chang 9 oil reservoirs of Yanchang formation in Donghan region, Ordos Basin. Lithologic Reservoirs, 2018, 30(1):30-38.
[15] 王伟, 吴奎, 何京, 等. 锦州25-1油田优质储层地震响应特征与定量预测.岩性油气藏, 2018, 30(3):100-111. WANG W, WU K, HE J, et al. Seismic response characteristics and quantitative prediction of high-quality reservoirs in Jinzhou 25-1 Oilfield. Lithologic Reservoirs, 2018, 30(3):100-111.
[16] 刘波, 赵翰卿, 王良书, 等. 古河流废弃河道微相的精细描述. 沉积学报, 2001, 19(3):394-398. LIU B, ZHAO H Q, WANG L S, et al. Detailed description of the abandoned channel of ancient rivers. Acta Sedimentologica Sinica, 2001, 19(3):394-398.
[17] 吕晓光, 赵翰卿, 付志国, 等. 河流相储层平面连续性精细描述.石油学报, 1997, 18(2):66-71. LYU X G, ZHAO H Q, FU Z G, et al. Detailed description of areal continuity of fluvial facies reservoir. Acta Petrolei Sinica, 1997, 18(2):66-71.
[18] 张京思, 揣媛媛, 边立恩. 正演模拟技术在渤海油田X井区砂体连通性研究中的应用.岩性油气藏, 2016, 28(3):127-132. ZHANG J S, CHUAI Y Y, BIAN L E. Application of forward modeling to study of sand body connectivity in X well field of Bohai oilfield. Lithologic Reservoirs, 2016, 28(3):127-132.
[19] 肖大坤, 胡光义, 范廷恩, 等.现代曲流河沉积原型建模及构型级次特征探讨:以海拉尔河、潮白河为例.中国海上油气, 2018, 30(1):118-126. XIAO D K, HU G Y, FAN T E, et al. Prototype model of modern fluvial deposits and discussion on architectural units:a case study of Hailar River and Chaobai River. China Offshore Oil and Gas, 2018, 30(1):118-126.
[20] SUN L P, ZHENG X D, SHOU H, et al. Quantitative prediction of channel sand bodies based on seismic peak attributes in the frequency domain and its application. Applied Geophysics, 2010, 7(1):10-17.
[1] 何文渊, 陈可洋. 哈萨克斯坦南图尔盖盆地Doshan斜坡带岩性油气藏储层预测方法[J]. 岩性油气藏, 2024, 36(4): 1-11.
[2] 王同川, 陈浩如, 温龙彬, 钱玉贵, 李玉琢, 文华国. 川东五百梯地区石炭系岩溶古地貌识别及储集意义[J]. 岩性油气藏, 2024, 36(4): 109-121.
[3] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
[4] 范蕊, 刘卉, 杨沛广, 孙星, 马辉, 郝菲, 张珊珊. 阿曼盆地A区白垩系泥岩充填型碳酸盐岩溶蚀沟谷识别技术[J]. 岩性油气藏, 2023, 35(6): 72-81.
[5] 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158.
[6] 童强, 余建国, 田云吉, 胡克来, 杨红梅, 程旭明, 朱玉双. 演武油田Y116井区延8段构型界面约束下的单河道砂体构型[J]. 岩性油气藏, 2020, 32(3): 144-158.
[7] 涂乙, 王亚会, 闫正和, 高永明, 魏启任. 基于构型单元“势控论”研究与剩余油开发效果分析[J]. 岩性油气藏, 2019, 31(4): 133-140.
[8] 常海燕, 严耀祖, 陈更新, 郭宁, 项燚伟, 杨会洁. 近岸水下扇储层构型及剩余油分布模式——以柴达木盆地七个泉油田E31油藏为例[J]. 岩性油气藏, 2018, 30(3): 143-152.
[9] 王伟, 吴奎, 何京, 张金辉, 沈洪涛. 锦州25-1油田优质储层地震响应特征与定量预测[J]. 岩性油气藏, 2018, 30(3): 100-111.
[10] 王秀姣, 黄家强, 姜仁, 曾庆才. 不同含气砂岩的AVO响应类型及其近似式误差分析[J]. 岩性油气藏, 2017, 29(5): 120-126.
[11] 武爱俊, 徐建永, 滕彬彬, 肖伶俐, 康波, 李凡异, 印斌浩. “动态物源”精细刻画方法与应用——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2017, 29(4): 55-63.
[12] 邓帅, 刘学伟, 王祥春. 上覆水平界面对目的层地震波振幅的影响[J]. 岩性油气藏, 2017, 29(3): 118-125.
[13] 张京思,揣媛媛,边立恩. 正演模拟技术在渤海油田 X 井区砂体连通性研究中的应用[J]. 岩性油气藏, 2016, 28(3): 127-132.
[14] 陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟[J]. 岩性油气藏, 2014, 26(5): 91-96.
[15] 陈可洋,陈树民,李来林,吴清岭,范兴才,刘振宽. 地震波动方程方向行波波场分离正演数值模拟与逆时成像[J]. 岩性油气藏, 2014, 26(4): 130-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .