岩性油气藏 ›› 2020, Vol. 32 ›› Issue (4): 136–142.doi: 10.12108/yxyqc.20200414

• 油气田开发 • 上一篇    下一篇

CO2驱酸化溶蚀作用对原油采收率的影响机理

孙会珠1,2,3, 朱玉双1,2, 魏勇4, 高媛3,5   

  1. 1. 西北大学 大陆动力学国家重点实验室, 西安 710069;
    2. 西北大学 地质学系, 西安 710069;
    3. 西安石油大学 石油工程学院, 西安 710065;
    4. 中国石油新疆油田分公司 风城油田作业区, 新疆 克拉玛依 834014;
    5. 陕西燃气集团有限公司, 西安 710016
  • 收稿日期:2019-12-28 修回日期:2020-02-27 出版日期:2020-08-01 发布日期:2020-06-16
  • 通讯作者: 朱玉双(1968-),女,博士,教授,主要从事油气田开发地质及提高采收率方面的教学与科研工作。Email:yshzhu@nwu.edu.cn。 E-mail:yshzhu@nwu.edu.cn
  • 作者简介:孙会珠(1980-),男,西北大学在读博士研究生,讲师。研究方向为油气田地质与开发。地址:(710065)陕西省西安市雁塔区电子二路18号。Email:sunhz@xsyu.edu.cn
  • 基金资助:
    陕西省教育厅重点实验室项目“鄂尔多斯盆地陆相页岩储层微—纳米孔隙结构特征研究”(编号:17JS115)、陕西省自然科学基础研究计划资助项目“致密砂岩微纳米级多孔介质在CO2-原油混相体系下的尺度演化机制及动态预测模型研究”(编号:2019JQ-808)和陕西省教育厅科研计划项目“CO2-原油混相体系沉积颗粒在致密砂岩微—纳米级多孔介质中的流动规律及影响因素”(编号:19JK0670)联合资助

Influence mechanism of acidification on oil recovery during CO2 flooding

SUN Huizhu1,2,3, ZHU Yushuang1,2, WEI Yong4, GAO Yuan3,5   

  1. 1. State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China;
    2. Department of Geology, Northwest University, Xi'an 710069, China;
    3. School of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    4. Fengcheng Oilfield Operation Area, PetroChina Xinjiang Oilfield Company, Karamay 834014, Xinjiang, China;
    5. Shaanxi Gas Group Co., Ltd., Xi'an 710016, China
  • Received:2019-12-28 Revised:2020-02-27 Online:2020-08-01 Published:2020-06-16

摘要: CO2驱酸化溶蚀作用对储层会产生一定程度的伤害。为揭示这种伤害作用对原油采收率的影响机理,选取6块同级别渗透率的岩心样品,在地层温度、压力条件下进行物理模拟实验,通过核磁共振技术评价酸化溶蚀作用对原油采收率的影响机理。实验结果显示,驱替产出流体的pH值低于原始地层水,且通过离子浓度变化发现驱替过程中有长石和碳酸盐矿物发生溶蚀;岩心的渗透率在驱替结束后出现一定程度降低,且反应时间越长,渗透率的降幅越大;岩心样品的最终采收率与反应时间呈反比,反应时间为240 h的岩心样品相比反应时间为0 h的岩心样品,其最终采收率降幅达到27.31%。综合分析认为,CO2驱长时间的酸化溶蚀反应产物及脱落的黏土颗粒会堵塞孔喉,导致储层渗流能力下降,进而影响CO2驱的驱油效率及最终采收率。

关键词: CO2驱, 酸化溶蚀作用, 核磁共振技术, 影响机理, 采收率

Abstract: The acidification of CO2 can cause damage to the reservoir to a certain extent. In order to reveal the influence mechanism of acidification on oil recovery,six core samples with the same level of permeability were selected for CO2 flooding tests under the conditions of reservoir temperature and pressure,and then the influence mechanism of acidification on oil recovery was evaluated by NMR technique. The results show that the pH value of the displaced fluids is lower than that of the original formation water,and the change of the ion concentration before and after CO2 flooding reflects the dissolution of feldspar and carbonate minerals. The permeability of the core samples decreased after CO2 flooding,and the longer the reaction time,the greater the decrease of permeability. The ultimate recovery factor of the core sample is inversely proportional to the reaction time. The core sample with a reaction time of 240 h was reduced by 27.31% compared to the core sample of 0 h. Comprehensive analysis shows that the long-term acidification and corrosion reaction products of CO2 flooding and the exfoliated clay particles will block the pore throat,resulting in the decline of reservoir seepage capacity, which in turn affects the displacement efficiency and ultimate recovery factor of CO2 flooding.

Key words: CO2 flooding, acidification, nuclear magnetic resonance, influence mechanism, oil recovery

中图分类号: 

  • TE357
[1] 秦积舜, 韩海水, 刘晓蕾.美国CO2驱油技术应用及启示.石油勘探与开发, 2015, 42(2):209-216. QIN J S, HAN H S, LIU X L. Application and enlightenment of carbon dioxide flooding in the United States of America. Petroleum Exploration and Development, 2015, 42(2):209-216.
[2] 王玉普, 刘义坤, 邓庆军.中国陆相砂岩油田特高含水期开发现状及对策.东北石油大学学报, 2014, 38(1):1-9. WANG Y P, LIU Y K, DENG Q J. Current situation and development strategy of the extra high water cut stage of continental facies sandstone oil fields in China. Journal of Northeast Petroleum University, 2014, 38(1):1-9.
[3] 张德平.CO2驱采油技术研究与应用现状.科技导报, 2011, 29(13):75-79. ZHANG D P. CO2 flooding enhanced oil recovery technique and its application status. Science & Technology Review, 2011, 29(13):75-79.
[4] 杨红, 王宏, 南宇峰, 等.油藏CO2驱油提高采收率适宜性评. 岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[5] 王琛, 李天太, 高辉, 等.CO2驱沥青质沉积量对致密砂岩油藏采收率的影响机理.油气地质与采收率, 2018, 25(3):107-111. WANG C, LI T T, GAO H, et al. Study on influencing mechanism of asphaltene precipitation on oil recovery during CO2 flooding in tight sandstone reservoirs. Petroleum Geology and Recovery Efficiency, 2018, 25(3):107-111.
[6] 祝春生, 程林松.低渗透油藏CO2驱提高原油采收率评价研究.钻采工艺, 2007, 30(6):55-57. ZHU C S, CHENG L S. Evaluation of CO2 flooding in low permeability reservoirs to improve crude oil recovery. Drilling & Production Technology, 2007, 30(6):55-57.
[7] 王琛, 李天太, 高辉, 等.CO2驱沥青质沉积对岩心的微观伤害机理.新疆石油地质, 2017, 38(5):602-606. WANG C, LI T T, GAO H, et.al. Microscopic damage mechanism of asphaltene deposition on cores during CO2 flooding. Xinjiang Petroleum Geology, 2017, 38(5):602-606.
[8] 李士伦, 周守信, 杜建芬, 等.国内外注气提高石油采收率技术回顾与展望.油气地质与采收率, 2002, 9(2):1-5. LI S L, ZHOU S X, DU J F, et al. Petroleum geology and recovery efficiency. Petroleum Geology and Recovery Efficiency, 2002, 9(2):1-5.
[9] 郭冀隆.二氧化碳地质封存过程中CO2-水-岩相互作用实验研究.北京:中国地质大学(北京),2017. GUO J L. Experimental studies on CO2-water-rockinteractions under geological CO2 storage conditions. Beijing:China University of Geosciences(Beijing), 2017.
[10] 王晓宇.埋藏条件下CO2-地层水-砂岩相互作用实验及其地质应用.南京:南京大学, 2017. WANG X Y. A experimental study of CO2-formation water-sandstone interactions under burial conditions and its geological applications. Nanjing:Nanjing University, 2017.
[11] 尚庆华, 王玉霞, 黄春霞, 等.致密砂岩油藏超临界与非超临界CO2驱油特征.岩性油气藏, 2018, 30(3):153-158. SHANG Q H, WANG Y X, HUANG C X, et al. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir. Lithologic Reservoirs, 2018, 30(3):153-158.
[12] 马力, 欧阳传湘, 谭钲扬, 等.低渗透油藏CO2驱中后期提效方法研究.岩性油气藏, 2018, 30(2):139-145. MA L, OUYANG C X, TAN Z Y, et al. Efficiency improvement of CO2 flooding in middle and later stage for low permeability reservoirs. Lithologic Reservoirs, 2018, 30(2):139-145.
[13] 周冰.CO2流体对泥岩盖层的改造作用——水岩相互作用实验研究//中国地质学会.中国地质学会2015学术年会论文摘要汇编(中册).西安:中国地质学会, 2015. ZHOU B. Reconstruction of mudstone caprock by CO2 fluid:Experimental study on water-rock interaction//Geological Society of China. Abstracts of the 2015 Annual Meeting of Geological Society of China. Xi'an:Geological Society of China, 2015.
[14] 王琛, 李天太, 赵金省, 等.利用核磁共振技术研究沥青质沉积对低渗储层孔隙结构的影响. 地球物理学进展, 2018, 33(4):1700-1706. WANG C, LI T T, ZHAO J S, et al. Study on effect of asphaltene precipitation on the pore structure of low permeability reservoir by nuclear magnetic resonance(NMR). Progress in Geophysics, 2018, 33(4):1700-1706.
[15] 李紫晶, 郭冀隆, 张阳阳, 等.砂岩高温超临界CO2水岩模拟实验及其地质意义.天然气工业, 2015, 35(5):31-38. LI Z J, GUO J L, ZHANG Y Y, et al. High-temperature supercritical CO2 water-rock simulation experiment of sandstone and its geological significance. Natural Gas Industry, 2015, 35(5):31-38.
[16] ROSS G D, TODD A C, TWEEDIE J A, et al. The dissolution effects of CO2-brine systems on the permeability of UK and North Sea calcareous sandstones. SPE 10685, 1982.
[17] RYOJI S, THOMAS L. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Applied Geochemistry, 2000, 15(3):265-279.
[18] YU Z, LIU L, YANG S, et al. An experimental study of CO2-brine-rock interaction at in situ pressure-temperature reservoir conditions. Chemical Geology, 2012, 326:88-101.
[19] 于志超.饱和CO2地层水驱过程中的水-岩相互作用研究.吉林:吉林大学, 2013. YU Z C. An experimental study on water-rock interaction during water flooding in formations saturated with CO2. Jilin:Jilin University, 2013.
[20] 于志超, 杨思玉, 刘立, 等.饱和CO2地层水驱过程中的水-岩相互作用实验. 石油学报, 2012, 33(6):1032-1042. YU Z C, YANG S Y, LIU L, et al. An experimental study on water-rock interaction during water flooding in formations saturated with CO2. Acta Petrolei Sinica, 2012, 33(6):1032-1042.
[21] 于淼, 刘立, 杨思玉, 等.CO2-盐水-砂岩相互作用实验研究.矿物学报, 2015, 35(增刊1):803. YU M, LIU L, YANG S Y, et al. Experimental study on CO2-Brine-Sandstone interaction. Acta Mineralogica Sinica, 2015, 35(Suppl 1):803.
[22] 于淼.CO2驱油后的流体-岩石相互作用实验//中国矿物岩石地球化学学会.中国矿物岩石地球化学学会第15届学术年会论文摘要集(5).长春:中国矿物岩石地球化学学会, 2015. YU M. Fluid-rock interaction experiment after CO2 flooding//Chinese Society for Mineralogy,Petrology and Geochemistry. Abstract Collection of Papers of the 15th Annual Conference of Chinese Society for Mineralogy, Petrology and Geochemistry. Changchun:Chinese Society for Mineralogy, Petrology and Geochemistry, 2015.
[23] 王琛, 李天太, 高辉, 等.CO2-地层水-岩石相互作用对特低渗透砂岩孔喉伤害程度定量评价.西安石油大学学报(自然科学版), 2017, 32(6):66-72. WANG C, LI T T, GAO H, et al. Quantitative study on the damage degree of CO2-formation water-rock interaction on pore and throat of ultra-low permeability sandstone. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(6):66-72.
[24] 唐梅荣, 张同伍, 白晓虎, 等.孔喉结构对CO2驱储层伤害程度的影响.岩性油气藏, 2019, 31(3):113-119. TANG M R, ZHANG T W, BAI X H, et al. Influence of pore throat structure on reservoir damage with CO2 flooding. Lithologic Reservoirs, 2019, 31(3):113-119.
[1] 郭永伟, 闫方平, 王晶, 褚会丽, 杨建雷, 陈颖超, 张笑洋. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
[2] 崔永正, 姜瑞忠, 郜益华, 乔欣, 王琼. 空间变导流能力压裂井CO2驱试井分析[J]. 岩性油气藏, 2020, 32(4): 172-180.
[3] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[4] 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133.
[5] 唐梅荣, 张同伍, 白晓虎, 王泫懿, 李川. 孔喉结构对CO2驱储层伤害程度的影响[J]. 岩性油气藏, 2019, 31(3): 113-119.
[6] 韩培慧, 闫坤, 曹瑞波, 高淑玲, 佟卉. 聚驱后油层提高采收率驱油方法[J]. 岩性油气藏, 2019, 31(2): 143-150.
[7] 景紫岩, 张佳, 李国斌, 竺彪, 韩国庆, 刘双双. 泡沫混排携砂解堵机理及影响因素[J]. 岩性油气藏, 2018, 30(5): 154-160.
[8] 尚庆华, 王玉霞, 黄春霞, 陈龙龙. 致密砂岩油藏超临界与非超临界CO2驱油特征[J]. 岩性油气藏, 2018, 30(3): 153-158.
[9] 马力, 欧阳传湘, 谭钲扬, 王长权, 宋岩, 林飞. 低渗透油藏CO2驱中后期提效方法研究[J]. 岩性油气藏, 2018, 30(2): 139-145.
[10] 杨红, 王宏, 南宇峰, 屈亚宁, 梁凯强, 江绍静. 油藏CO2驱油提高采收率适宜性评价[J]. 岩性油气藏, 2017, 29(3): 140-146.
[11] 刘晨, 王凯, 王业飞, 周文胜. 针对A油田的抗温、抗盐聚合物/表面活性剂二元复合驱油体系研究[J]. 岩性油气藏, 2017, 29(3): 152-158.
[12] 郭 平,许清华,孙 振,杜建芬,汪周华. 天然气藏 CO2驱及地质埋存技术研究进展[J]. 岩性油气藏, 2016, 28(3): 6-11.
[13] 李海涛,李 颖,李亚辉,王 科. 低盐度注水提高碳酸盐岩油藏采收率[J]. 岩性油气藏, 2016, 28(2): 119-126.
[14] 李 军,张军华,谭明友,崔世凌,曲志鹏,于景强. CO2驱油及其地震监测技术的国内外研究现状[J]. 岩性油气藏, 2016, 28(1): 128-134.
[15] 李传亮,朱苏阳. 水驱油效率可达到 100%[J]. 岩性油气藏, 2016, 28(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .