岩性油气藏 ›› 2019, Vol. 31 ›› Issue (3): 113–119.doi: 10.12108/yxyqc.20190313

• 油气田开发 • 上一篇    下一篇

孔喉结构对CO2驱储层伤害程度的影响

唐梅荣1,2, 张同伍1,2, 白晓虎1,2, 王泫懿1,2, 李川1,2   

  1. 1. 中国石油长庆油田分公司 油气工艺研究院, 西安 710018;
    2. 低渗透油气田勘探开发国家工程实验室, 西安 710018
  • 收稿日期:2018-12-21 修回日期:2019-03-10 出版日期:2019-05-21 发布日期:2019-05-06
  • 作者简介:唐梅荣(1980-),男,硕士,高级工程师,主要从事致密油体积压裂与应用方面的研究工作。地址:(710018)陕西省西安市未央区明光路中国石油长庆油田分公司油气工艺研究院。Email:tmr_cq@petrochina.com.cn。
  • 基金资助:
    国家科技重大专项“致密油富集规律与勘探开发关键技术”(编号:2016ZX05046)和“鄂尔多斯盆地致密油开发示范工程”(编号:2017ZX05069)联合资助

Influence of pore throat structure on reservoir damage with CO2 flooding

TANG Meirong1,2, ZHANG Tongwu1,2, BAI Xiaohu1,2, WANG Xuanyi1,2, LI Chuan1,2   

  1. 1. Research Institute of Oil and Gas Technology, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi'an 710018, China
  • Received:2018-12-21 Revised:2019-03-10 Online:2019-05-21 Published:2019-05-06

摘要: 在CO2驱提高采收率的过程中,CO2与原油、基质矿物的相互作用会对储层孔喉结构造成一定的伤害。为了揭示孔喉结构对CO2驱储层伤害程度的影响,利用高压压汞、扫描电镜结合核磁共振技术,通过室内物理模拟实验确定岩心样品的孔喉堵塞程度,评价了不同孔喉结构的岩心样品在CO2驱过程中的伤害程度,明确了CO2驱储层伤害机理。实验结果表明:CO2驱过程中产生的沥青质沉积及酸化作用对储层孔隙度的影响很小,实验岩心样品的孔隙度降幅为1%左右,而渗透率受到的伤害程度较高,Ⅲ类孔隙结构岩心的渗透率降幅达20.55%,且渗透率越低、孔喉结构越差,渗透率受到伤害的程度越高;孔喉堵塞程度与孔喉结构参数成正相关关系,孔喉结构越差,中值半径越小,越容易发生孔喉堵塞;Ⅰ类孔隙结构岩心的孔喉堵塞程度较低,Ⅲ类孔隙结构岩心的孔喉堵塞程度明显增高,最高可达到34.32%。该研究结果可为CO2驱现场高效应用提供依据。

关键词: 核磁共振, 孔喉结构, CO2驱, 储层伤害, 影响机理

Abstract: In the process of enhancing oil recovery by CO2 flooding, the interaction of CO2 with crude oil and matrix minerals will damage the pore throat structure of reservoir. In order to reveal the influence of pore throat structure on reservoir damage during CO2 flooding, nuclear magnetic resonance (NMR) combined with high pressure mercury injection and scanning electron microscopy was used to determine the plugging degree of pore throat in core samples through laboratory physical simulation experiments, and the damage degree of core samples with different pore throat structures during CO2 flooding was evaluated, to clarify the reservoir damage mechanism. The experimental results show that asphaltene deposition and acidification produced during CO2 flooding have little effect on reservoir porosity, and the porosity of core samples decreased by about 1%. While the damage to permeability is greater, and the permeability of core with type Ⅲ pore structure decreased by 20.55%. The lower the permeability and the worse the pore throat structure, the greater the damage to permeability. The plugging degree of pore throat is positively correlated with pore throat structure parameters. The worse the pore throat structure is, the lower the median radius is, the easier the pore throat plugging will occur. The rate of pore throat plugging in type I pore structure cores is low, and the degree of pore throat plugging in type Ⅲ pore structure cores is obviously increased, up to 34.32%. The results can provide a basis for efficient application of CO2 flooding in the field.

Key words: nuclear magnetic resonance, pore throat structure, CO2 flooding, reservoir damage, influencing mechanism

中图分类号: 

  • TE357.7
[1] 高云丛, 赵密福, 王建波, 等.特低渗油藏CO2 非混相驱生产特征与气窜规律.石油勘探与开发, 2014, 41(1):79-85. GAO Y C, ZHAO M F, WANG J B, et al. Performance and gas breakthrough during CO2 immiscible flooding in ultra-low permeability reservoirs. Petroleum Exploration and Development, 2014, 41(1):79-85.
[2] 程杰成, 刘春林, 汪艳勇, 等.特低渗透油藏二氧化碳近混相驱试验研究.特种油气藏, 2016, 23(6):64-67. CHENG J C, LIU C L, WANG Y Y, et al. Near-miscible CO2 flooding test in ultra-low permeability oil reservoir. Special Oil & Gas Reservoirs, 2016, 23(6):64-67.
[3] 郝永卯, 薄启炜, 陈月明.CO2 驱油实验研究.石油勘探与开发, 2005, 32(2):110-112. HAO Y M, BO Q W, CHEN Y M. Laboratory investigation of CO2 flooding. Petroleum Exploration and Development, 2005,32(2):110-112.
[4] 马力, 欧阳传湘, 谭钲扬, 等.低渗透油藏CO2 驱中后期提效方法研究.岩性油气藏, 2018, 30(2):139-145. MA L, OUYANG C X, TAN Z Y, et al. Efficiency improvement of CO2 flooding in middle and later stage for low permeability reservoirs. Lithologic Reservoirs, 2018, 30(2):139-145.
[5] 尚庆华, 王玉霞, 黄春霞, 等.致密砂岩油藏超临界与非超临界CO2驱油特征.岩性油气藏, 2018, 30(3):153-158. SHANG Q H, WANG Y X, HUANG C X, et al. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir. Lithologic Reservoirs, 2018, 30(3):153-158.
[6] 杨红, 王宏, 南宇峰, 等.油藏CO2 驱油提高采收率适宜性评价.岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[7] 王琛, 李天太, 高辉, 等.CO2 驱沥青质沉积量对致密砂岩油藏采收率的影响机理.油气地质与采收率, 2018, 25(3):107-111. WANG C, LI T T, GAO H, et al. Study on influence mechanisms of asphaltene precipitation on oil recovery during CO2 flooding in tight sandstone reservoirs. Petroleum Geology and Recovery Efficiency, 2018, 25(3):107-111.
[8] 高志彬. 注CO2 过程中沥青沉淀对储层伤害的定量评价研究. 北京:中国地质大学(北京), 2014. GAO Z B. Quantitative evaluation of formation damage due to asphaltene deposition when CO2 flooding. Beijing:China University of Geosciences(Beijing), 2014.
[9] 孙忠新.CO2 驱油效果影响因素研究. 大庆:大庆石油学院, 2009. SUN Z X. Study on influencing factors of CO2 flooding. Daqing:Daqing Petroleum Institute, 2009.
[10] 王琛, 李天太, 高辉, 等.CO2驱沥青质沉积对岩心的微观伤害机理.新疆石油地质, 2017, 38(5):602-606. WANG C, LI T T, GAO H, et al. Microscopic damage mechanism of asphaltene deposition on cores during CO2 flooding. Xinjiang Petroleum Geology, 2017, 38(5):602-606.
[11] 王琛, 李天太, 高辉, 等.CO2-地层水-岩石相互作用对特低渗透砂岩孔喉伤害程度定量评价.西安石油大学学报(自然科学版), 2017, 32(6):66-72. WANG C, LI T T, GAO H, et al. Quantitative study on the damage degree of CO2-formation water-rock interaction on pore and throat of ultra-low permeability sandstone. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(6):66-72.
[12] BEHBAHANI T J, GHOTBI C, TAGHIKHANI V. Investigation on asphaltene deposition mechanisms during CO2 flooding processes in porous media:a novel experimental study and a modified model based on multilayer theory for asphaltene adsorption. Energy Fuels, 2012, 26(8):5080-5091.
[13] 王琛, 李天太, 赵金省, 等.利用核磁共振技术研究沥青质沉积对低渗储层孔隙结构的影响. 地球物理学进展, 2018, 33(4):1700-1706. WANG C, LI T T, ZHAO J S, et al. Study on effect of asphaltene precipitation on the pore structure of low permeability reservoir by nuclear magnetic resonance. Progress in Geophysics (in Chinese), 2018, 33(4):1700-1706.
[14] YU Z C, LIU L, YANG S Y, et al. An experimental study of CO2-brine-rock interaction at in situ pressure-temperature reservoir conditions. Chemical Geology, 2012, 326:88-101.
[15] 于志超, 杨思玉, 刘立, 等.饱和CO2 地层水驱过程中的水-岩相互作用实验.石油学报,2012, 33(6):1032-1042. YU Z C, YANG S Y, LIU L, et al. An experimental study on water-rock interaction during water flooding in formation saturated with CO2. Acta Petrolei Sinica, 2012, 33(6):1032-1042.
[1] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[2] 郭永伟, 闫方平, 王晶, 褚会丽, 杨建雷, 陈颖超, 张笑洋. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
[3] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[4] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
[5] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[6] 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142.
[7] 崔永正, 姜瑞忠, 郜益华, 乔欣, 王琼. 空间变导流能力压裂井CO2驱试井分析[J]. 岩性油气藏, 2020, 32(4): 172-180.
[8] 杨甫, 贺丹, 马东民, 段中会, 田涛, 付德亮. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3): 14-23.
[9] 程辉, 王付勇, 宰芸, 周树勋. 基于高压压汞和核磁共振的致密砂岩渗透率预测[J]. 岩性油气藏, 2020, 32(3): 122-132.
[10] 柳娜, 周兆华, 任大忠, 南珺祥, 刘登科, 杜堃. 致密砂岩气藏可动流体分布特征及其控制因素——以苏里格气田西区盒8段与山1段为例[J]. 岩性油气藏, 2019, 31(6): 14-25.
[11] 薛丹, 张遂安, 吴新民, 李旭航, 杜军军, 卢晨刚. 下寺湾油田长7油层组页岩气储层敏感性实验[J]. 岩性油气藏, 2019, 31(3): 135-144.
[12] 尚庆华, 王玉霞, 黄春霞, 陈龙龙. 致密砂岩油藏超临界与非超临界CO2驱油特征[J]. 岩性油气藏, 2018, 30(3): 153-158.
[13] 廖明光, 郭芸菲, 姚泾利, 廖纪佳, 南郡祥. 鄂尔多斯盆地华池—合水地区长31储层孔喉结构特征[J]. 岩性油气藏, 2018, 30(3): 17-26.
[14] 马力, 欧阳传湘, 谭钲扬, 王长权, 宋岩, 林飞. 低渗透油藏CO2驱中后期提效方法研究[J]. 岩性油气藏, 2018, 30(2): 139-145.
[15] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究——以吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2018, 30(1): 140-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .