岩性油气藏 ›› 2020, Vol. 32 ›› Issue (4): 172–180.doi: 10.12108/yxyqc.20200418

• 石油工程 • 上一篇    

空间变导流能力压裂井CO2驱试井分析

崔永正1, 姜瑞忠1, 郜益华2, 乔欣3, 王琼1   

  1. 1. 中国石油大学(华东)石油工程学院, 山东青岛 266580;
    2. 中海油研究总院有限责任公司, 北京 100028;
    3. 中国石油北京油气调控中心, 北京 100007
  • 收稿日期:2019-05-20 修回日期:2019-09-04 出版日期:2020-08-01 发布日期:2020-06-16
  • 第一作者:崔永正(1992-),男,中国石油大学(华东)在读博士研究生,研究方向为油气藏数值模拟及动态分析。地址:(266580)山东省青岛市黄岛区长江西路66号中国石油大学(华东)石油工程学院。Email:986012825@qq.com
  • 通信作者: 姜瑞忠(1964-),男,博士,教授,博士生导师,主要从事油气田开发方面的教学和研究工作。Email:jrzhong@126.com。
  • 基金资助:
    国家重大科技专项“厚层非均质气藏产能评价及预测技术”(编号:2016ZX05027-004-004)和“低渗、特低渗油藏水驱扩大波及体积方法与关键技术”(编号:2017ZX05013-002)联合资助

Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding

CUI Yongzheng1, JIANG Ruizhong1, GAO Yihua2, QIAO Xin3, WANG Qiong1   

  1. 1. College of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. CNOOC Research Institute Co., Ltd., Beijing 100028, China;
    3. PetroChina Oil & Gas Pipeline Control Center, Beijing 100007, China
  • Received:2019-05-20 Revised:2019-09-04 Online:2020-08-01 Published:2020-06-16

摘要: 目前利用压裂井进行CO2驱已成为低渗透油藏开发的主要技术之一,水力裂缝导流能力是决定开发效果的关键因素,而试井研究多采用与实际不符的恒定缝宽假设对水力裂缝进行描述。基于三区复合理论,建立考虑空间变导流能力压裂直井的CO2驱试井模型,通过Laplace变换进行求解,进行数值反演,绘制典型试井曲线。典型曲线可分为井筒储集段、井筒储集后过渡段、双线性流段、地层线性流段、第一径向流段、第一过渡流段、第二径向流段、第二过渡流段、第三径向流段共9个阶段。对模型影响因素进行分析,裂缝导流能力越大,双线性流段阶段压差越小,CO2越容易注入;考虑裂缝导流能力变化后,早期压差增大,压力及压力导数曲线都呈现一定的上升,表现出类似表皮系数增大的现象;CO2及过渡区半径主要对径向流的持续时间及过渡流出现时间产生影响,半径越大,对应过渡流出现的时间越晚;一区与二区流度比越大,过渡区及最外区流动阶段所消耗的压差越大;二区与三区流度比,最外区流动阶段所消耗的压差越大。

关键词: 压裂直井, 空间变导流能力, CO2驱, 试井分析

Abstract: At present,CO2 flooding with hydraulic fractured vertical wells has become one of the main technologies for the development of low permeability reservoirs. Hydraulic fracture conductivity is a key factor influencing the production performance of fractured wells,and now most well test models were based on the assumption of a constant fracture width,failing to simulate the space variable width of hydraulic fractures. Based on three-zone composite theory,a CO2 flooding well test model of hydraulic fractured vertical wells considering with variable conductivity was established, and the Laplace transformation was adopted to solve this model, and then the numerical inversion was carried out to draw typical well test curve. According to the pressure response characteristics, the pressure transient type curve was divided into nine stages including wellbore storage stage,skin effect stage, bilinear flow stage,linear flow stage,the first radial flow stage,the first transition stage,the second radial flow stage,the second transition stage and the late radial flow. Sensitivity analysis was carried out to investigate the influence of several factors on pressure transient. The results show that the larger the fracture conductivity was,the smaller the pressure of the bilinear flow stage was,and the easier CO2 can be injected. When the space variable conductivity was considered,the pressure of early flow stages increased,and the pressure and pressure derivative curve of early flow stages rised which was similar to the effect of a larger skin factor. The radius of region-1 and region-2 mainly had an influence on the starting time of transition stage and the duration of radial flow. When the radius of region-1 and region-2 was larger,the start time of the transfer stage was prolonged. When M12 was enhanced,the pressure of the flow in both region-2 and region-3 was larger. When M23 was enhanced,the pressure of the flow in region-3 elevated.

Key words: hydraulic fractured vertical wells, space variable conductivity, CO2 flooding, pressure transient analysis

中图分类号: 

  • TE348
[1] 胡文瑞, 魏漪, 鲍敬伟. 中国低渗透油气藏开发理论与技术进展. 石油勘探与开发, 2018, 45(4):646-656. HU W R, WEI Y, BAO J W. Development of the theory and technology for low permeability reservoirs in China. Petroleum Exploration and Development, 2018, 45(4):646-656.
[2] 袁士义, 王强. 中国油田开发主体技术新进展与展望. 石油勘探与开发, 2018, 45(4):657-668. YUAN S Y, WANG Q. New progress and prospect of oilfields development technologies in China. Petroleum Exploration and Development, 2018, 45(4):657-668.
[3] 唐梅荣, 张同伍, 白晓虎, 等. 孔喉结构对CO2驱储层伤害程度的影响. 岩性油气藏, 2019, 31(3):113-119. TANG M R, ZHANG T W, BAI X H, et al. Influence of pore throat structure on reservoir damage with CO2 flooding. Lithologic Reservoirs, 2019, 31(3):113-119.
[4] 杨红, 王宏, 南宇峰, 等. 油藏CO2驱油提高采收率适宜性评价. 岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[5] TANG R W, AMBASTHA A K. Analysis of CO2 pressure transient data with two-and three-region analytical radial composite models. SPE 18275, 1988.
[6] SU K, LIAO X, ZHAO X. Transient pressure analysis and interpretation for analytical composite model of CO2 flooding. Journal of Petroleum Science and Engineering, 2015, 125:128-135.
[7] 阎燕, 李友全, 于伟杰, 等.低渗透油藏CO2驱采油井试井模型. 断块油气田, 2018, 25(1):80-84. YAN Y, LI Y Q, YU W J, et al. Well test model research for CO2 flooding production well in low permeability reservoirs. Fault-Block Oil & Gas Field, 2018, 25(1):80-84.
[8] 李友全, 韩秀虹, 阎燕, 等. 低渗透油藏CO2吞吐压力响应曲线分析. 岩性油气藏, 2017, 29(6):122-130. LI Y Q, HAN X H, YAN Y, et al. Pressure transient analysis on CO2 huff and puff in low permeability reservoir. Lithologic Reservoirs, 2017, 29(6):122-130.
[9] 苏玉亮, 孟凡坤, 周诗雨, 等.低渗透油藏CO2驱试井曲线特征分析. 科技导报, 2015, 33(18):34-39. SU Y L, MENG F K, ZHOU S Y, et al. Characteristics analysis of well testing curve of CO2 flooding in low permeability reservoir. Science & Technology Review, 2015, 33(18):34-39.
[10] LI L, VOSKOV D V, YAO J, et al. Multiphase transient analysis for monitoring of CO2 flooding. Journal of Petroleum Science and Engineering, 2018, 160:537-554.
[11] LI L, YAO J, LI Y, et al. Pressure-transient analysis of CO2 flooding based on a compositional method. Journal of Natural Gas Science and Engineering, 2016, 33:30-36.
[12] 姜瑞忠, 张海涛, 张伟, 等. CO2驱三区复合油藏水平井压力动态分析. 油气地质与采收率, 2018(6):63-70. JIANG R Z, ZHANG H T, ZHANG W, et al. Dynamic pressure analysis of three-zone composite horizontal well in oil reservoirs for CO2 flooding. Petroleum Geology and Recovery Efficiency, 2018(6):63-70.
[13] TENG W C, QIAO X, TENG L, et al. Production performance analysis of multiple fractured horizontal wells with finite-conductivity fractures in shale gas reservoirs. Journal of Natural Gas Science and Engineering, 2016, 36:747-759.
[14] GUO J, WANG H, ZHANG L. Transient pressure and production dynamics of multi-stage fractured horizontal wells in shale gas reservoirs with stimulated reservoir volume. Journal of Natural Gas Science & Engineering, 2016, 35:425-443.
[15] 姬靖皓, 席家辉, 曾凤凰, 等. 致密油藏分段多簇压裂水平井非稳态产能模型. 岩性油气藏, 2019, 31(4):157-164. JI J H, XI J H, ZENG F H, et al. Unsteady productivity model of segmented multi -cluster fractured horizontal wells in tight oil reservoir. Lithologic Reservoirs, 2019, 31(4):157-164.
[16] JIA P, CHENG L S, HUANG S J, et al. Pressure-transient analysis of a finite-conductivity inclined fracture connected to a slanted wellbore. SPE Journal, 2016, 21(2):522-537.
[17] 郭建春, 路千里, 曾凡辉. 楔形裂缝压裂井产量预测模型. 石油学报, 2013, 34(2):346-352. GUO J C, LU Q L, ZENG F H. A productivity prediction model for a fractured well with wedge-shaped fractures. Acta Petrolei Sinica, 2013, 34(2):346-352.
[18] 孙贺东, 欧阳伟平, 张冕, 等.考虑裂缝变导流能力的致密气井现代产量递减分析. 石油勘探与开发, 2018, 45(3):98-106. SUN H D, OUYANG W P, ZHANG M, et al. Advanced production decline analysis of tight gas wells with variable fracture conductivity. Petroleum Exploration and Development, 2018, 45(3):98-106.
[19] 高阳, 赵超, 董平川, 等. 致密气藏变导流能力裂缝压裂水平井不稳定渗流模型. 大庆石油地质与开发, 2015, 34(6):141-147. GAO Y, ZHAO C, DONG P C, et al. Transient flow model of the fractured horizontal well with rariable conductivity fractures in tight gas reservoirs. Petroleum Geology and Oilfield Development in Daqing, 2015, 34(6):141-147.
[20] LUO W J, TANG C F. A semianalytical solution of a vertical fractured well with varying conductivity under non-Darcy-flow condition. SPE Journal, 2015, 20(5):1028-1040.
[21] HUANG Y, CHENG S Q, YU H Y, et al. A semianalytical approach to estimate fracture closure and formation damage of vertically fractured wells in tight gas reservoir. Journal of Petroleum Science and Engineering, 2017, 150:85-90.
[22] LIU Q L, TIAN S C, YU W, et al. A semi-analytical model for simulation of fluid flow in tight rock with irregular fracture geometry. Journal of Petroleum Science and Engineering, 2019, 174:14-24.
[23] LIU J, LIU P C, LI S M, et al. A mathematical model and semianalytical solution for transient pressure of vertical fracture with varying conductivity in three crossflow rectangular layers. Energy Exploration and Exploitation, 2019, 37(1):230-250.
[1] 史文洋, 程时清, 石志良, 张城玮, 李虹, 屠坤, 张郁哲. 纵向组合边界储层合采井压力响应特征及应用[J]. 岩性油气藏, 2021, 33(4): 156-165.
[2] 郭永伟, 闫方平, 王晶, 褚会丽, 杨建雷, 陈颖超, 张笑洋. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
[3] 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142.
[4] 唐梅荣, 张同伍, 白晓虎, 王泫懿, 李川. 孔喉结构对CO2驱储层伤害程度的影响[J]. 岩性油气藏, 2019, 31(3): 113-119.
[5] 尚庆华, 王玉霞, 黄春霞, 陈龙龙. 致密砂岩油藏超临界与非超临界CO2驱油特征[J]. 岩性油气藏, 2018, 30(3): 153-158.
[6] 马力, 欧阳传湘, 谭钲扬, 王长权, 宋岩, 林飞. 低渗透油藏CO2驱中后期提效方法研究[J]. 岩性油气藏, 2018, 30(2): 139-145.
[7] 杨红, 王宏, 南宇峰, 屈亚宁, 梁凯强, 江绍静. 油藏CO2驱油提高采收率适宜性评价[J]. 岩性油气藏, 2017, 29(3): 140-146.
[8] 陈祖华,汤勇,王海妹,陈雨菡. CO2驱开发后期防气窜综合治理方法研究[J]. 岩性油气藏, 2014, 26(5): 102-106.
[9] 李虎,蒲春生,吴飞鹏. 基于广义回归神经网络的CO2 驱最小混相压力预测[J]. 岩性油气藏, 2012, 24(1): 108-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .