岩性油气藏 ›› 2018, Vol. 30 ›› Issue (3): 153–158.doi: 10.12108/yxyqc.20180317

• 油气田开发 • 上一篇    下一篇

致密砂岩油藏超临界与非超临界CO2驱油特征

尚庆华1, 王玉霞2, 黄春霞1, 陈龙龙1   

  1. 1. 陕西延长石油(集团)有限责任公司 研究院, 西安 710075;
    2. 西北大学 大陆动力学国家重点实验室, 西安 710069
  • 收稿日期:2018-01-26 修回日期:2018-03-12 出版日期:2018-05-21 发布日期:2018-05-21
  • 第一作者:尚庆华(1984-),男,硕士,工程师,主要从事油田提高采收率技术方面的研究工作。地址:(710075)陕西省西安市延长石油(集团)有限责任公司研究院。Email:sqhsuc1984@126.com。
  • 基金资助:
    国家科技支撑计划项目“陕北煤化工CO2捕集、埋存与提高采收率技术示范”(编号:2012BAC26B00)和陕西省科技统筹创新工程计划项目“陕北致密砂岩油藏CO2驱提高采收率关键技术研究及先导试验”(编号:2014KTZB03-02)联合资助

Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir

SHANG Qinghua1, WANG Yuxia2, HUANG Chunxia1, CHEN Longlong1   

  1. 1. Research Institute of Shaanxi Yanchang Petroleum(Group) Co., Ltd., Xi'an 710075, China;
    2. State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China
  • Received:2018-01-26 Revised:2018-03-12 Online:2018-05-21 Published:2018-05-21

摘要: 细管驱替实验结果表明陕北某致密砂岩油藏在实施CO2驱时无法达到混相。为了明确非混相驱下CO2超临界性质对驱油贡献的大小及对驱油特征的影响规律,开展了室内超临界和非超临界CO2驱油实验研究。结果表明:CO2超临界性质对驱油具有积极影响,在超临界压力点附近,压力由非超临界过渡到超临界的较小变化会引起驱油特征的明显改变。当累积注入量达到0.5 PV以后,CO2超临界驱油效果明显好于非超临界驱油效果;超临界驱体现优势的阶段主要是CO2注入量为0.5~1.5 PV时,相同条件下采出程度比非超临界驱最高高出约10%。超临界驱和非超临界驱换油率出现高峰的注入时段基本都在注入量约为1 PV时,但前者明显高于后者。总之,无论是在注入性能方面,还是在驱油效率和换油率等方面,超临界驱均优于非超临界驱。

关键词: 有机质孔, 面孔率, 页岩孔隙度, 干酪根, 页岩油, 资源评价

Abstract: Slim tube displacement test results indicate that CO2 miscible flooding in tight sandstone reservoir in northern Shaanxi cannot be implemented. In order to define the contribution and the influence rule of supercritical CO2 properties on displacement characteristics in the condition of immiscible flooding,supercritical and non-supercritical CO2 oil displacement experiments were conducted. The results show that supercritical state of CO2 has a positive influence on oil displacement,and the small change of pressure near by the supercritical pressure point from non-supercritical to supercritical can bring a great difference of driving characteristics. After 0.5 PV cumulative injections,the effect of supercritical CO2 flooding is significantly better than that of non-supercritical flooding. The advantage stage for supercritical flooding is mainly when the cumulative CO2 injections reach between 0.5 PV and 1.5 PV,the recovery is about 10% higher than that of non-supercritical flooding under the same conditions. The oil change ratio of supercritical flooding and non-supercritical flooding occurs peak nearly at the same injection time (about 1 PV), but the former is significantly higher than the latter. In short,whether in the injection performance,or in the oil displacement efficiency and oil change ratio,supercritical flooding is better than non-supercritical flooding.

Key words: organic pore, surface porosity, shale porosity, kerogen, shale oil, resource assessment

中图分类号: 

  • TE357
[1] 江怀友, 沈平平, 陈立滇, 等.北美石油工业二氧化碳提高采率现状研究.中国能源, 2007, 29(7):30-33. JIANG H Y, SHEN P P, CHEN L D, et al. Research status of carbon dioxide for EOR to oil industry in North America. Energy of China, 2007, 29(7):30-33.
[2] 钱伯章, 朱建芳.世界封存CO2驱油的现状与前景.能源环境保护, 2008, 22(1):1-3. QIAN B Z, ZHU J F. Present situation together with foreground that CO2 sequestrate and drive oil in the world. Energy Environmental Protection, 2008, 22(1):1-3.
[3] MIDDLETON R S, LEVINE J S, BIELICKI J M, et al. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf. Greenhouse Gases Science & Technology, 2015, 5(3):241-253.
[4] MOHAN H, CAROLUS M J, BIGLARBIGI K. The potential for additional carbon dioxide flooding projects in the United States. British Medical Journal, 2008, 2(5804):50.
[5] MORITIS G. CO2 miscible, steam dominate enhanced oil recovery processes. Oil & Gas Journal, 2010, 108(14):36-40.
[6] 杨红, 王宏, 南宇峰, 等.油藏CO2驱油提高采收率适宜性评价.岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146.
[7] 张冬玉.CO2驱技术及其在胜利油田的应用前景.油气田地面工程, 2010, 29(5):50-52. ZHANG D Y. CO2 flooding technology and its application prospect in Shengli oil field. Oil-Gas field Surface Engineering, 2010, 29(5):50-52.
[8] 武毅.包14块低渗透油藏注CO2开发效果研究.科学技术与工程, 2011, 11(23):5650-5653. WU Y. The development effect of CO2 flooding on low permeability reservoirs in Bao 14 block. Science Technology and Engineering, 2011, 11(23):5650-5653.
[9] 庄永涛, 刘鹏程, 张婧瑶, 等.大庆外围油田CO2驱注采参数优化研究.钻采工艺, 2014, 37(1):42-46. ZHUANG Y T, LIU P C, ZHANG J Y, et al. Optimization of injection and production parameters of CO2 flooding in Daqing oil field. Drilling & Production Technology, 2014, 37(1):42-46.
[10] 陈祖华, 汤勇, 王海妹, 等.CO2驱开发后期防气窜综合治理方法研究.岩性油气藏, 2014, 26(5):102-106. CHEN Z H, TANG Y, WANG H M, et al. Comprehensive treatment of gas channeling at the later stage of CO2 flooding. Lithologic Reservoirs, 2014, 26(5):102-106.
[11] 郭平, 黄宇, 李向良, 等.渗透率及压力对低渗油藏CO2驱油效率的影响.断块油气田, 2013, 20(6):768-771. GUO P, HUANG Y, LI X L, et al. Influence of permeability and pressure on CO2 displacement efficiency in low permeability reservoir. Fault-Block Oil and Gas Field, 2013, 20(6):768-771.
[12] MENG C, GU Y. Physicochemical characterization of produced oils and gases in immiscible and miscible CO2 flooding processes. Energy Fuels, 2013, 27(1):440-453.
[13] NOBAKHT M, MOGHADAM S, GU Y. Mutual interactions between crude oil and CO2, under different pressures. Fluid Phase Equilibria, 2008, 265(2):94-103.
[14] 李保振, 李相方, SEPEHRNOORI Kamy, 等.低渗油藏CO2驱中注采方式优化设计.西南石油大学学报(自然科学版), 2010, 32(2):101-107. LI B Z, LI X F, SEPEHRNOORI K, et al. Optimization of the injection and production schemes during CO2 flooding for tight reservoir. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(2):101-107.
[15] 陈祖华. 低渗透油藏CO2驱油开发方式与应用. 现代地质, 2015(4):950-957. CHEN Z H. Application and utilization of CO2 flooding in lowpermeability reservoir. Geoscience, 2015(4):950-957.
[16] 王欢, 廖新维, 赵晓亮.特低渗透油藏注CO2驱参数优化研究. 西南石油大学学报(自然科学版), 2014, 36(6):95-104. WANG H, LIAO X W, ZHAO X L. Research on CO2 flooding parameters optimization of extra-low permeability reservoirs. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(6):95-104.
[17] 郝永卯, 陈月明, 于会利.CO2驱最小混相压力的测定与预测. 油气地质与采收率, 2005, 12(6):64-66. HAO Y M, CHEN Y M, YU H L. Determination and prediction of minimum miscibility pressure in CO2 flooding. Petroleum Geology and Recovery Efficiency, 2005, 12(6):64-66.
[18] 国殿斌, 徐怀民.深层高压低渗油藏CO2驱室内实验研究——以中原油田胡96块为例.石油实验地质, 2014(1):102-105. GUO D B, XU H M. Laboratory experiments of CO2 flooding in deep-buried high-pressure low-permeability reservoirs:a case study of block Hu 96 in Zhongyuan oil field. Petroleum Geology & Experiment, 2014(1):102-105.
[19] 黄春霞, 汤瑞佳, 余华贵, 等.高压悬滴法测定CO2-原油最小混相压力.岩性油气藏, 2015, 27(1):127-130. HUANG C X, TANG R J, YU H G, et al. Determination of the minimum miscibility pressure of CO2 and crude oil system by hanging drop method. Lithologic Reservoirs, 2015, 27(1):127-130.
[20] HAMOUDA A A, CHUKWUDEME E A, MIRZA D. Investigating the effect of CO2 flooding on asphaltenic oil recovery and reservoir wettability. Energy Fuels, 2009, 23(2):1118-1127.
[21] 尚庆华, 吴晓东, 韩国庆, 等.CO2驱油井产能及影响因素敏感性分析.石油钻探技术, 2011, 39(1):83-88. SHANG Q H, WU X D, HAN G Q, et al. CO2 flooding well productivity and its impacting factor sensitivity analysis. Petroleum Drilling Techniques, 2011, 39(1):83-88.
[22] 杨大庆, 江绍静, 尚庆华, 等. 注气压力对特低渗透油藏CO2驱气窜的影响规律研究.钻采工艺, 2014, 37(4):63-65. YANG D Q, JIANG S J, SHANG Q H, et al. Research on influence laws of gas injection pressure on CO2 flooding gas channeling in low permeability reservoirs. Drilling & Production Technology, 2014, 37(4):63-65.
[23] 熊健, 郭平, 杜建芬, 等.特低渗透油藏注气驱长岩心物理模拟.西安石油大学学报(自然科学版), 2011, 26(2):56-59. XIONG J, GUO P, DU J F, et al. Physical simulation of gas driving with long ultralow permeability core. Journal of Xi'an Shiyou University(Natural Science Edition), 2011, 26(2):56-59.
[1] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[2] 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168.
[3] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[4] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[5] 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43.
[6] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[7] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[8] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[9] 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64.
[10] 邓远, 陈轩, 覃建华, 李映艳, 何吉祥, 陶鑫, 尹太举, 高阳. 吉木萨尔凹陷二叠系芦草沟组一段沉积期古地貌特征及有利储层分布[J]. 岩性油气藏, 2024, 36(1): 136-144.
[11] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[12] 刘海磊, 朱永才, 刘龙松, 尹鹤, 王学勇, 杜小弟. 准噶尔盆地阜康断裂带上盘二叠系芦草沟组页岩油地质特征及勘探潜力[J]. 岩性油气藏, 2023, 35(4): 90-101.
[13] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[14] 柳忠泉, 赵乐强, 曾治平, 田继军, 李正强, 罗锦昌, 胡美玲. 准噶尔盆地阜康断裂带二叠系芦草沟组页岩油成藏条件[J]. 岩性油气藏, 2023, 35(3): 126-137.
[15] 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .