岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 153–161.doi: 10.12108/yxyqc.20210316

• 油气田开发 • 上一篇    下一篇

致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征

郭永伟1,2, 闫方平1, 王晶1, 褚会丽1, 杨建雷1, 陈颖超1, 张笑洋1   

  1. 1. 承德石油高等专科学校, 河北 承德 066700;
    2. 承德市油气田人工智能工程技术研究中心, 河北 承德 066700
  • 收稿日期:2020-10-13 修回日期:2020-12-24 出版日期:2021-06-01 发布日期:2021-06-03
  • 通讯作者: 闫方平(1981-),男,硕士,副教授,主要从事提高油气采收率、地热开发等方面的研究。Email:yanfpingcdsy@163.com。 E-mail:yanfpingcdsy@163.com。
  • 作者简介:郭永伟(1979—),男,博士,讲师,主要从事油气田开发教学、数字化油田、提高采收率、人工举升技术等相关的研究工作。地址:(066700)河北省承德市高新技术开发区承德石油高等专科学校。Email:619669564@qq.com
  • 基金资助:
    国家科技重大专项专题“超深层及中新元古界油气资源形成保持机制与分布预测”(编号:2011ZX05004)资助

Characteristics of solid deposition and reservoir damage of CO2 flooding in tight sandstone reservoirs

GUO Yongwei1,2, YAN Fangping1, WANG Jing1, CHU Huili1, YANG Jianlei1, CHEN Yingchao1, ZHANG Xiaoyang1   

  1. 1. Chengde Petroleum College, Chengde 066700, Hebei, China;
    2. Chengde Field Artificial Intelligence Engineering Technology Research Center, Chengde 066700, Hebei, China
  • Received:2020-10-13 Revised:2020-12-24 Online:2021-06-01 Published:2021-06-03

摘要: 沥青质及金属无机沉淀对致密储层的伤害是注CO2驱替中不可避免的问题。为探究沥青质及无机沉淀对储层的伤害机理,以鄂尔多斯盆地延长组长7储层为例,在明确(非)混相压力下原油中CO2含量与沥青质沉淀量关系的基础上,通过开展CO2驱替长岩心实验,研究了CO2非混相和混相驱过程中沥青质和无机沉淀对储层的伤害特征,评价了有机和无机沉淀对储层渗透率和孔隙度的伤害程度。结果表明:当原油中CO2含量达到临界值时,沥青质开始沉淀,沉淀量随CO2含量的增加先快速上升后趋于稳定。混相压力下沥青质沉淀对渗透率和孔隙度的伤害程度均大于非混相。沥青质在混相压力下大量沉积部位为长岩心中后部,而在非混相压力下主要在长岩心前中部。当岩心中沥青质沉淀量达到最大时,后续岩心中的沥青质沉淀量将会逐渐降低,对渗透率造成的伤害也会逐渐减小。无机沉淀在非混相压力下对前中部岩心的渗透率伤害程度大,而在混相压力下则对中后部岩心的渗透率伤害程度大;无机沉淀对孔隙度的影响规律与对渗透率存在差异,主要与溶蚀作用及无机沉淀产生的位置有密切关系。若目标油藏采用非混相驱开发,预防重点为无机沉淀,预防沉淀部位为注入端附近储层;若采用混相驱开发,则预防重点为有机沉淀,预防沉淀部位为产出端附近储层。

关键词: 致密砂岩, CO2驱替, 沥青质沉积, 无机沉淀, 注入压力

Abstract: The damage of asphaltene and metal inorganic precipitation to tight reservoir is an inevitable problem in CO 2 flooding. In order to explore the damage mechanism of asphaltene and inorganic precipitation to reservoir,taking Chang 7 reservoir of Yanchang Formation in Ordos Basin as an example,on the basis of clarifying the relationship between CO2 content and asphaltene precipitation in crude oil under(non)miscible pressure,the damage characteristics of asphaltene and inorganic precipitation on reservoir during CO2 immiscible and miscible flooding were studied by long core experiment,and the damage degree of organic and inorganic precipitation on reservoir permeability and porosity was evaluated. The results show that when the CO2 content in crude oil reaches the critical value,asphaltene begins to precipitate,and the precipitation increases rapidly at first and then tends to be stable with the increase of CO 2 content. The damage degree of asphaltene precipitation to permeability and porosity under miscible pressure is greater than that under immiscible pressure. Under miscible pressure,a large number of asphaltenes are deposited in the back of long cores,while under non miscible pressure,they are mainly in the front and middle of long cores. When the asphaltene precipitation in the core reaches the maximum,the subsequent asphaltene precipitation in the core will gradually decrease,and the damage to permeability will also gradually reduce. The damage degree of inorganic precipitation to the permeability of the front and middle cores is greater under immiscible pressure,while the damage degree of inorganic precipitation to the permeability of the middle and rear cores is greater under miscible pressure. The effect of inorganic precipitation on porosity is different from that on permeability, which is closely related to dissolution and the location of inorganic precipitation. If the target reservoir is developed by immiscible flooding,the prevention focus is on inorganic precipitation, and the prevention position is near the injection end;if miscible flooding is used,the prevention focus is on organic precipitation, and the prevention position is near the production end.

Key words: tight sandstone, CO2 flooding, asphaltene deposition, inorganic precipitation, injection pressure

中图分类号: 

  • TE31
[1] 邹才能, 朱如凯, 吴松, 等.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例.石油学报, 2012, 33(3):173-187. ZOU C N, ZHU R K, WU S, et al. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulation:Taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica, 2012, 33(3):173-187.
[2] 孙会珠, 朱玉双, 魏勇, 等.CO2 驱酸化溶蚀作用对原油采收率的影响机理.岩性油气藏, 2020, 32(4):136-142. SUN H Z, ZHU Y S, WEI Y, et al. Influence mechanism of acidification on oil recovery during CO2 flooding. Lithologic Reservoirs, 2020, 32(4):136-142.
[3] 韩海水, 李实, 陈兴隆, 等.CO2 对原油烃组分膨胀效应的主控因素.石油学报, 2016, 37(3):392-398. HAN H S, LI S, CHEN X L, et al. Main control factors of carbon dioxide on swelling effect of crude hydrocarbon components. Acta Petrolei Sinica, 2016, 37(3):392-398.
[4] 沈平平, 黄磊.二氧化碳-原油多相多组分渗流机理研究.石油学报, 2009, 30(2):247-251. SHEN P P, HUANG L. Flow mechanisms of multi-phase multicomponent CO2-crude oil system in porous media. Acta Petrolei Sinica, 2009, 30(2):247-251.
[5] 胡伟, 吕成远, 王锐, 等.水驱转CO2 混相驱渗流机理及传质特征.石油学报, 2018, 39(2):201-209. HU W, LYU C Y, WANG R, et al. Porous flow mechanism and mass transfer characteristics of CO2 miscible flooding after waterflooding. Acta Petrolei Sinica, 2018, 39(2):201-209.
[6] 杨胜来, 杭达震, 孙蓉, 等.CO2 对原油的抽提及其对原油黏度的影响.中国石油大学学报:自然科学版, 2009, 33(4):85-88. YANG S L, HANG D Z, SUN R, et al. CO2 extraction for crude oil and its effect on crude oil viscosity. Journal of China University of Petroleum(Edition of Natural Science), 2009, 33(4):85-88.
[7] 王琛, 李天太, 赵金省, 等.利用核磁共振技术研究沥青质沉积对低渗储层孔隙结构的影响. 地球物理学进展, 2018, 33(4):1700-1706. WANG C, LI T T, ZHAO J S, et al. Study on effect of asphaltene precipitation on the pore structure of low permeability reservoir by nuclear magnetic resonance(NMR). Progress in Geophysics (in Chinese), 2018, 33(4):1700-1706.
[8] WANG X Q, GU Y A. Oil recovery and permeability reduction of a tight sandstone reservoir in immiscible and miscible CO2 flooding process. Industrial & Engineering Chemistry Research, 2011, 50(4):2388-2399.
[9] 熊山, 王学生, 张遂, 等.WXS油藏长期水驱储层物性参数变化规律.岩性油气藏, 2019, 31(3):120-129. XIONG S, WANG X S, ZHANG S, et al. Physical properties of WXS reservoir after long-term water flooding. Lithologic Reservoirs, 2019, 31(3):120-129.
[10] 唐梅荣, 张同伍, 白晓虎, 等.孔喉结构对CO2 驱储层伤害程度的影响.岩性油气藏, 2019, 31(3):1-8. TANG M R, ZHANG T W, BAI X H, et al. Influence of pore throat structure on reservoir damage with CO2 flooding. Lithologic Reservoirs, 2019, 31(3):1-8.
[11] SRIVASTAVA R K, HUANG S S, DONG M Z. Asphaltene deposition during CO2 flooding. SPE Production & Facilities, 1999, 14(4):235-245.
[12] PAPADIMITRIOU N I, ROMANOS G E, CHARALAMBOPOU G C, et al. Experimental investigation of asphaltene deposition mechanism during oil flow in core samples. Journal of Petroleum Science and Engineering, 2007, 57(3/4):281-293.
[13] BEHBAHANI T J, GHOTBI C, TAGHIKHANI V, et al. Investigation on asphaltene deposition mechanisms during CO2 flooding processes in porous media:A novel experimental study and modified model based on multilayer theory for asphaltene adsorption. Energy & Fuels, 2012, 26(8):5080-5091.
[14] 乞照, 安锴胜, 王筱晔, 等. CO2 驱沥青质沉积对致密储层的伤害机理:以鄂尔多斯盆地延长组长8 储层为例. 断块油气田, 2020, 27(3):350-354. QI Z, AN K S, WANG X Y, et al. Damage mechanism of asphaltene deposition to tight reservoir during CO2 flooding:Taking Chang 8 reservoir of Yanchang Formation in Ordos Basin as an example. Fault-Block Oil & Gas Field, 2020, 27(3):350-354.
[15] 肖娜, 李实, 林梅钦.CO2-水-岩石相互作用对岩石孔渗参数及孔隙结构的影响:以延长油田35-3井储层为例. 油田化学, 2018, 35(1):85-90. XIAO N, LI S, LIN M Q. Effect of CO2-water-rock interaction on porosity,permeability and pore structure characters of reservoir rock:A case study of 35-3 well in Yanchang Oilfield. Oilfield Chemistry, 2018, 35(1):85-90.
[16] ZHANG L, REN B, HUANG H D, et al. CO2 EOR and storage in Jilin oilfield China:Monitoring program and preliminary results. Journal of Petroleum Science & Engineering, 2015, 125:1-12.
[17] QIAN K, YANG S L, DOU H E, et al. Experimental investigation on microscopic residual oil distribution during CO2 huff-and-puff process in tight oil reservoirs. Fuel, 2018, 11:28-43.
[18] CAO M, GU Y A. Oil recovery mechanisms and asphaltene precipitation phenomenon in immiscible and miscible CO2 flooding processes. Fuel, 2013, 109:157-166.
[19] 雷浩.低渗储层CO2 驱油过程中沉淀规律及防治对策研究. 北京:中国石油大学(北京), 2017. LEI H. Deposition mechanisms and reservoir protection countermeasures of a low-permeability formation in CO2 flooding process. Beijing:China University of Petroleum(Beijing), 2017.
[20] 郑希谭, 孙雯悦, 李实, 等.GB/T 26981-2011油气藏流体物性分析方法.北京:石油工业出版社, 2010. ZHENG X T, SUN W Y, LI S, et al. GB/T 26981-2011 Test method for reservoir fluid physical properties. Beijing:Petroleum Industry Press, 2010.
[21] 王翠红, 罗爱兰, 王子军. NB/SH/T 0509-2010石油沥青质四组分测定方法.北京:中国石化出版社, 2010. WANG C H, LUO A L, WANG Z J. NB/SH/T 0509-2010 Test method for separation of asphalt into four fractions. Beijing:Sinopec Press, 2010.
[1] 王永骁, 付斯一, 张成弓, 范萍. 鄂尔多斯盆地东部山西组2段致密砂岩储层特征[J]. 岩性油气藏, 2021, 33(6): 12-20.
[2] 张玉晔, 高建武, 赵靖舟, 张恒, 吴和源, 韩载华, 毛朝瑞, 杨晓. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 2021, 33(6): 29-38.
[3] 张文凯, 施泽进, 田亚铭, 王勇, 胡修权, 李文杰. 川东南志留系小河坝组致密砂岩孔隙类型及成因[J]. 岩性油气藏, 2021, 33(4): 10-19.
[4] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[5] 刘桓, 苏勤, 曾华会, 孟会杰, 张小美, 雍运动. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112.
[6] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[7] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[8] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[9] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[10] 张艳, 高世臣, 孟婉莹, 成育红, 蒋思思. 致密砂岩储层AVO正演模拟过程中的不确定性分析[J]. 岩性油气藏, 2020, 32(6): 120-128.
[11] 张鹏, 杨巧云, 范宜仁, 张云, 张海涛. 基于Xu-White模型的致密砂岩储层含气性评价[J]. 岩性油气藏, 2020, 32(6): 138-145.
[12] 侯科锋, 李进步, 张吉, 王龙, 田敏. 苏里格致密砂岩气藏未动用储量评价及开发对策[J]. 岩性油气藏, 2020, 32(4): 115-125.
[13] 刘俞佐, 石万忠, 刘凯, 王任, 吴睿. 鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式[J]. 岩性油气藏, 2020, 32(3): 56-67.
[14] 程辉, 王付勇, 宰芸, 周树勋. 基于高压压汞和核磁共振的致密砂岩渗透率预测[J]. 岩性油气藏, 2020, 32(3): 122-132.
[15] 沈健. 鄂尔多斯盆地陇东地区致密砂岩储层碳酸盐胶结物特征及成因机理[J]. 岩性油气藏, 2020, 32(2): 24-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[2] 张学涛,王祝文,原镜海. 利用时频分析方法在阵列声波测井中区分油水层[J]. 岩性油气藏, 2008, 20(1): 101 -104 .
[3] 郑荣才, 耿威, 周刚, 韩永林, 王海红, 文华国. 鄂尔多斯盆地白豹地区长6 砂岩成岩作用与成岩相研究[J]. 岩性油气藏, 2007, 19(2): 1 -8 .
[4] 宋立忠, 李本才, 王芳. 松辽盆地南部扶余油层低渗透油藏形成机制[J]. 岩性油气藏, 2007, 19(2): 57 -61 .
[5] 杜海峰,于兴河. 鄂尔多斯盆地姬塬地区延长组长3 油组成岩作用分析[J]. 岩性油气藏, 2007, 19(3): 38 -43 .
[6] 孔祥宇,殷进垠,张发强. 哈萨克斯坦南图尔盖盆地油气地质特征及勘探潜力分析[J]. 岩性油气藏, 2007, 19(3): 48 -53 .
[7] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[8] 李传亮. 底水油藏不适合采用水平井[J]. 岩性油气藏, 2007, 19(3): 120 -122 .
[9] 王道富,付金华,雷启鸿,罗安湘. 鄂尔多斯盆地低渗透油气田勘探开发技术与展望[J]. 岩性油气藏, 0, (): 126 -130 .
[10] 曲春霞, 杨秋莲, 刘登飞, 刘旭, 李爱琴, 崔攀峰. 长庆油田延长组特低渗透储层物性影响因素分析[J]. 岩性油气藏, 2008, 20(2): 43 -47 .