岩性油气藏 ›› 2021, Vol. 33 ›› Issue (3): 162–168.doi: 10.12108/yxyqc.20210317

• 油气田开发 • 上一篇    下一篇

基于渗透率修正因子的气体有效扩散系数分形模型

王昌进, 张赛, 徐静磊   

  1. 昆明理工大学 机电工程学院, 昆明 650500
  • 收稿日期:2020-06-10 修回日期:2020-09-30 发布日期:2021-06-03
  • 通讯作者: 张赛(1987-),女,博士,讲师,主要从事分形多孔介质传热传质方面的教学与研究工作。Email:sai_zh@163.com。 E-mail:sai_zh@163.com。
  • 作者简介:王昌进(1995—),男,昆明理工大学在读硕士研究生,研究方向为多孔介质气体扩散。地址:(650500)云南省昆明市呈贡区景明南路727号昆明理工大学。Email:w542497986@sina.com
  • 基金资助:
    昆明理工大学省级项目(人培)“多孔材料热质传递及耦合问题的分形研究”(编号:KKSY201601011)、云南省科学技术厅青年基金项目“基于分形理论的多孔材料热质传递系数与热-质全耦合数学模型”(编号:KKSQ201701008)联合资助

Fractal model of effective gas diffusion coefficient based on permeability correction factor

WANG Changjin, ZHANG Sai, XU Jinglei   

  1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2020-06-10 Revised:2020-09-30 Published:2021-06-03

摘要: 多孔介质中气体的扩散现象广泛存在于能源与环境、油气藏工程等领域,真实多孔介质内部结构具有不规则性和复杂性,在一定尺度范围内表现出分形的特征。为了探究气体在具有分形特性的多孔介质中的扩散规律,引入渗透率修正因子,结合菲克定律,建立了气体有效扩散系数与多孔介质结构参数和气体参数的函数关系。结果表明,气体有效扩散系数与多孔介质面积分形维数、孔隙度、最大孔隙直径均成正比,与迂曲分形维数、气体摩尔质量、气体密度均成反比。通过对比分形模型预测的气体有效扩散系数与已有实验数据可以发现,考虑了渗透率修正因子的模型与实验数据更加吻合。新建立的气体扩散系数分形模型可以正确地描述气体在多孔介质中的扩散规律,对油气田的开发具有借鉴意义。

关键词: 气体扩散, 渗透率修正因子, 分形模型, 菲克定律

Abstract: The phenomenon of gas diffusion in porous media is widespread in the fields of energy and environment,oil and gas reservoir engineering. The internal structure of real porous media is irregular and complex,and shows fractal characteristics within a certain scale. In order to explore the law of gas diffusion in porous media with fractal characteristics,the permeability correction factor and Fick's law were introduced to establish the functional relationships of effective gas diffusion coefficient with porous media structure parameters and gas parameters. The results show that the effective gas diffusion coefficient is proportional to the area fractal dimension of porous media,porosity,and maximum pore diameter,and inversely proportional to tortuous fractal dimension, gas molar mass and gas density. By comparing the effective gas diffusion coefficient predicted by fractal model with the experimental data,it can be found that the model based on permeability correction factor is more consistent with the experimental data. The new fractal model of gas diffusion coefficient can correctly describe the law of gas diffusion in porous media, which has reference significance for the development of oil and gas fields.

Key words: gas diffusion, permeability correction factor, fractal model, Fick's law

中图分类号: 

  • TE311
[1] 郑仟.分形多孔介质中气体流动与扩散的输运特性研究.武汉:华中科技大学物理系, 2012. ZHENG Q. Study of some transport properties for gas flow and diffusion through fractal porous media. Wuhan:Huazhong University of Science and Technology, 2012.
[2] CAO L Y, HE R. Gas diffusion in fractal porous media. Combustion Science and Technology, 2010, 182(7):822-841.
[3] 王晓琦, 翟增强, 金旭, 等.页岩气及其吸附与扩散的研究进展.化工学报, 2015, 66(8):2838-2845. WANG X Q, ZHAI Z Q, JIN X, et al. Progress in adsorption and diffusion of shale gas. CIESC Journal, 2015, 66(8):2838-2845.
[4] BESKOK A, KARNIADAKIS G E. A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophysical Engineering, 1999, 3(1):43-77.
[5] 符东宇, 李勇明, 赵金洲, 等.基于REV尺度格子Boltzmann方法的页岩气藏渗流规律.岩性油气藏, 2020, 32(5):151-160. FU D Y, LI Y M, ZHAO J Z, et al. Gas seepage flow law of shale gas reservoirs based on REV-scale lattice Boltzmann method. Lithologic Reservoirs, 2020, 32(5):151-160.
[6] ROY S, RAJU R. Modeling gas flow through microchannels and nanopores. Journal of Applied Physics, 2003, 93(8):4870-4879.
[7] 张烈辉, 单保超, 赵玉龙, 等.页岩气藏表观渗透率和综合渗流模型建立.岩性油气藏, 2017, 29(6):108-118. ZHANG L H, SHAN B C, ZHAO Y L, et al. Establishment of apparent permeability model and seepage flow model for shale reservoir. Lithologic Reservoirs, 2017, 29(6):108-118.
[8] 李亚雄, 刘先贵, 胡志明, 等.页岩气滑脱、扩散传输机理耦合新方法.物理学报, 2017, 66(11):230-240. LI Y X, LIU X G, HU Z M, et al. A new method for the transport mechanism coupling of shale gas slippage and diffusion. Acta Physica Sinica, 2017, 66(11):230-240.
[9] 陈居凯, 朱炎铭, 崔兆帮, 等.川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏, 2018, 30(1):55-62. CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):55-62.
[10] 朱汉卿, 贾爱林, 位云生, 等.基于氩气吸附的页岩纳米级孔隙结构特征.岩性油气藏, 2018, 30(2):77-84. ZHU H Q, JIA A L, WEI Y S, et al. Nanopore structure characteristics of shale based on Ar adsorption. Lithologic Reservoirs, 2018, 30(2):77-84.
[11] 邓浩阳, 司马立强, 吴玟, 等.致密砂岩储层孔隙结构分形研究与渗透率计算:以川西坳陷蓬莱镇组、沙溪庙组储层为例. 岩性油气藏, 2018, 30(6):76-82. DENG H Y, SIMA L Q, WU W, et al. Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs:A case of Penglaizhen Formation and Shaximiao Formation in western Sichuan Depression. Lithologic Reservoirs, 2018, 30(6):76-82.
[12] 姜瑞忠, 张春光, 郜益华, 等.缝洞型碳酸盐岩油藏水平井分形非线性渗流.岩性油气藏, 2019, 31(6):118-126. JIANG R Z, ZHANG C G, GAO Y H, et al. Fractal nonlinear seepage model of horizontal wells in fractured-vuggy carbonate reservoirs. Lithologic Reservoirs, 2019, 31(6):118-126.
[13] 李玉丹, 董平川, 张荷, 等.基于分形理论的页岩基质表观渗透率研究.油气地质与采收率, 2017,24(1):92-99. LI Y D, DONG P C, ZHANG H, et al. Analysis on apparent permeability of shale matrix based on fractal theory. Petroleum Geology and Recovery Efficiency, 2017, 24(1):92-99.
[14] 王世芳, 吴涛, 曹秀英.分形多孔材料的一种改进化气体扩散分形模型.化学工程, 2018, 46(2):14-17. WANG S F, WU T, CAO X Y. An improved gas diffusivity fractal model for fractal porous materials. Chemical Engineering(China), 2018, 46(2):14-17.
[15] ZHENG Q, YU B M, WANG S F, et al. A diffusivity model for gas diffusion through fractal porous media. Chemical Engineering Science, 2012, 68(1):650-655.
[16] SHI Y, XIAO J S, QUAN S H, et al. Fractal model for prediction of effective hydrogen diffusivity of gas diffusion layer in proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2009, 35(7):2863-2867.
[17] ZHANG L Z. A fractal model for gas permeation through porous membranes. International Journal of Heat and Mass Transfer, 2008, 51(21):5288-5295.
[18] WOIGNIER T, ANEZ L, CALAS-ETIENNE S, et al. Gas slippage in fractal porous material. Journal of Natural Gas Science and Engineering, 2018, 57:11-20.
[19] 张赛, 陈君若, 刘显茜.气体有效扩散系数的分形模型.化学工程, 2013, 41(5):39-43. ZHANG S, CHEN J R, LIU X X. Fractal model of gas effective diffusivity. Chemical Engineering(China), 2013, 41(5):39-43.
[20] 牟新竹, 陈振乾.多尺度分形多孔介质气体有效扩散系数的数学模型. 东南大学学报(自然科学版), 2019, 49(3):520-526. MOU X Z, CHEN Z Q. Mathematical model for effective gas diffusion coefficient in multi-scale fractal porous media. Journal of Southeast University(Natural Science Edition), 2019, 49(3):520-526.
[21] 郁伯铭, 徐鹏, 邹明清, 等.分形多孔介质输运物理.北京:科学出版社, 2014:5-33. YU B M, XU P, ZOU M Q, et al. Transport physics in fractal porous media. Beijing:Science Press, 2014:5-33.
[22] 朱维耀, 马千, 邓佳, 等.纳微米级孔隙气体流动数学模型及应用.北京科技大学学报,2014, 36(6):709-715. ZHU W Y, MA Q, DENG J, et al. Mathematical model and application of gas flow in nano-micron pores. Journal of University of Science and Technology Beijing, 2014, 36(6):709-715.
[23] 刘圣鑫, 钟建华, 刘晓光, 等.致密多孔介质气体运移机理.天然气地球科学, 2014, 25(10):1520-1528. LIU S X, ZHONG J H, LIU X G, et al. Gas transport mechanism in tight porous media. Natural Gas Geoscience, 2014, 25(10):1520-1528.
[24] FENG Y J, YU B M, ZOU M Q, et al. A generalized model for the effective thermal conductivity of porous media based on selfsimilarity. Journal of Physics D:Applied Physics, 2004, 37:3030-3040.
[25] 尹帅, 谢润成, 丁文龙, 等.常规及非常规储层岩石分形特征对渗透率的影响.岩性油气藏, 2017, 29(4):81-90. YIN S, XIE R C, DING W L, et al. Influences of fractal characteristics of reservoir rocks on permeability. Lithologic Reservoirs, 2017, 29(4):81-90.
[26] CURRIE J A. Gaseous diffusion in porous media. Part 2:Dry granular materials. British Journal of Applied Physics, 1960, 11(8):318-324.
[1] 沈瑞, 胡志明, 郭和坤, 姜柏材, 苗盛, 李武广. 四川盆地长宁龙马溪组页岩赋存空间及含气规律[J]. 岩性油气藏, 2018, 30(5): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[5] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[6] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[7] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[8] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[9] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[10] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .