岩性油气藏 ›› 2020, Vol. 32 ›› Issue (3): 122–132.doi: 10.12108/yxyqc.20200312

• 勘探技术 • 上一篇    下一篇

基于高压压汞和核磁共振的致密砂岩渗透率预测

程辉1, 王付勇1, 宰芸1, 周树勋2   

  1. 1. 中国石油大学(北京)非常规油气科学技术研究院, 北京 102249;
    2. 中国石油长庆油田分公司 油田开发事业部, 西安 710021
  • 收稿日期:2019-10-08 修回日期:2019-12-20 出版日期:2020-05-21 发布日期:2020-04-30
  • 通讯作者: 王付勇(1985-),男,博士,副研究员,主要从事非常规油气藏开发与提高采收率、油气藏动态监测等方面的研究工作。Email:wangfuyong@cup E-mail:wangfuyong@cup
  • 作者简介:程辉(1996-),男,中国石油大学(北京)在读硕士研究生,研究方向为非常规油气藏开发与提高采收率。地址:(102249)北京市昌平区中国石油大学(北京)非常规油气科学技术研究院。Email:1650865147@qq.com
  • 基金资助:
    国家自然科学基金项目“表面活性剂在致密油藏裂缝-微纳米孔隙中的多尺度渗吸驱油机理研究”(编号:51874320)和中国石油大学(北京)青年拔尖人才科研启动基金项目“致密油藏渗吸提高采收率机理研究”(编号:2462017BJB11)联合资助

Prediction of tight sandstone permeability based on high-pressure mercury intrusion(HPMI)and nuclear magnetic resonance(NMR)

CHENG Hui1, WANG Fuyong1, ZAI Yun1, ZHOU Shuxun2   

  1. 1. The Unconventional Oil and Gas Institute, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Oilfield Development Division, PetroChina Changqing Oilfield Company, Xi'an 710021, China
  • Received:2019-10-08 Revised:2019-12-20 Online:2020-05-21 Published:2020-04-30

摘要: 分析影响致密砂岩渗透率的主控因素并准确预测致密砂岩渗透率对致密油气藏的开发具有重要意义。以鄂尔多斯盆地延长组致密砂岩为研究对象,基于高压压汞和核磁共振对致密砂岩渗透率主控因素进行了研究,分别评价并优选了更适用于致密砂岩的基于高压压汞和核磁共振的渗透率预测模型。结果表明:影响致密砂岩渗透率的主要因素是孔喉半径,其中中值孔喉半径与致密砂岩渗透率相关性最强;与核磁共振T2加权平均值相比,T2几何均值与致密砂岩渗透率的相关性更强;在3种不同的核磁共振渗透率预测模型中,SDR-REV模型的预测效果要优于SDR模型和KCT2w模型;在3种不同的高压压汞渗透率预测模型中,基于r40r45的Winland模型渗透率预测精度较高。研究成果对鄂尔多斯盆地延长组致密砂岩的进一步有效开发具有指导意义。

关键词: 致密砂岩, 渗透率, 高压压汞, 核磁共振, 延长组, 鄂尔多斯盆地

Abstract: It is of great significance for the development of tight oil and gas reservoir to analyze the main factors affecting the permeability of tight sandstone and accurately predict the permeability of tight sandstone. Taking the tight sandstone from Yanchang Formation in Ordos Basin as the research subject,the main controlling factors of tight sandstone permeability were studied based on high-pressure mercury intrusion(HPMI) and nuclear magnetic resonance(NMR). The permeability prediction models based on NMR and HPMI were evaluated and optimized respectively. The results show that pore-throat size is the main factor affecting tight sandstone permeability,and the median pore-throat radius size has strongest correlation with tight sandstone permeability. Compared with NMR weighted average T2,geometric mean T2 has stronger correlation with tight sandstone permeability. Among the three different NMR permeability prediction models,SDR-REV model has better permeability prediction results compared with SDR model and KCT2w model. Among the three different HPMI permeability prediction models,the Winland model based on r40 and r45 has the highest permeability prediction results. The research results have guiding significance for the further effective development of tight sandstones of Yanchang Formation in Ordos Basin.

Key words: tight sandstone, permeability, high-pressure mercury intrusion, nuclear magnetic resonance, Yanchang Formation, Ordos Basin

中图分类号: 

  • TE122.2
[1] 贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景.石油学报,2012,33(3):343-350. JIA C Z,ZOU C N,LI J Z,et al. Assessment criteria,main types, basic features and resource prospects of the tight oil in China. Acta Petrolei Sinica,2012,33(3):343-350.
[2] 贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景.石油勘探与开发,2012,39(2):129-136. JIA C Z,ZHENG M,ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development,2012,39(2):129-136.
[3] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例,石油学报, 2012,33(2):173-187. ZOU C N,ZHU R K,WU S T,et al. Types,characteristics,genesis and prospects of conventional and unconventionalhydrocarbon accumulations. Acta Petrolei Sinica,2012,33(2):173-187.
[4] 闫伟鹏,杨涛,马洪,等.中国陆相致密油成藏模式及地质特征.新疆石油地质,2014,35(2):131-136. YAN W P,YANG T,MA H,et al. The tight oil accumulation model and geological characteristics in continental sedimentary basins of China. Xinjiang Petroleum Geology,2014,35(2):131-136.
[5] U. S. Energy Information Administration. How much shale (tight) oil is produced in the United States?[2019-09-04] https://www.eia.gov/tools/faqs/faq.php?id=847&t=6.
[6] 胡素云,朱如凯,吴松涛,等.低油价背景下中国陆相致密油的效益勘探开发.石油勘探与开发,2018,45(4):1-12. HU S Y,ZHU R K,WU S T,et al. The exploration and development of continental tight oil in China under the background of low oil price. Petroleum Exploration and Development,2018, 45(4):1-12.
[7] 杜金虎,刘合,马德胜,等.试论中国陆相致密油有效开发技术.石油勘探与开发,2014,41(2):198-205. DU J H,LIU H,MA D S,et al. Discussion on effective development techniques for continental tight oil in China. Petroleum Exploration and Development,2014,41(2):198-205.
[8] 杨智,付金华,郭秋麟,等.鄂尔多斯盆地三叠系延长组陆相致密油发现、特征及潜力.中国石油勘探,2017,22(6):9-15. YANG Z,FU J H,GUO Q L,et al. Discovery,characteristics and resource potential of continental tight oil in Triassic Yanchang Formation,Ordos Basin. China Petroleum Exploration, 2017,22(6):9-15.
[9] ZOU C N,ZHU R K,LIU K Y,et al. Tight gas sandstone reservoirs in China:characteristics and recognition criteria. Journal of Petroleum Science and Engineering,2012,88:82-91.
[10] LIU M,XIE R H,LI C X,et al. A new method for determining tight sandstone permeability based on the characteristic Parameters of the NMR T 2 distribution. Applied Magnetic Resonance, 2017,48(10):1009-1029.
[11] WANG F Y,YANG K,CAI J C. Fractal characterization of tight oil reservoir pore structure using nuclear magnetic resonance and mercury intrusion porosimetry. Fractals,2018,26(2):1840017.
[12] SHAO X H,PANG X Q,LI H,et al. Fractal analysis of pore network in tight gas sandstones using NMR method:a case study from the Ordos Basin,China. Energy & Fuels,2017,31(10):10358-10368.
[13] 公言杰,柳少波,赵孟军,等.核磁共振与高压压汞实验联合表征致密油储层微观孔喉分布特征.石油实验地质,2016,38(3):389-394. GONG Y J,LIU S B,ZHAO M J,et al.Characterization of micro pore throat radius distributionin tight oil reservoirs by NMR and high pressure mercury injection. Petroleum Geology & Experiment,2016,38(3):389-394.
[14] 严强,张云峰,付航,等.运用高压压汞及扫描电镜多尺度表征致密砂岩储层微纳米级孔喉特征:以渤海湾盆地沾化凹陷义176区块沙四段致密砂岩储层为例.石油实验地质,2018, 40(2):280-287. YAN Q,ZHANG Y F,FU H,et al. High pressure mercury injection and scanning electron microscopy applied tocharacterize micro-and nano-scale pore throats in tight sandstone reservoirs:a case study of the fourth member of Shahejie Formationin Yi176 block,Zhanhua Sag,Bohai Bay Basin. Petroleum Geology & Experiment,2018,40(2):280-287.
[15] XIAO L,MAO Z Q,ZOU C C,et al. A new methodology of constructing pseudo capillary pressure (pc) curves from nuclear magnetic resonance (NMR) logs. Journal of Petroleum Science and Engineering,2016,147:154-167.
[16] KOLODZIES. Analysis of pore throat size and use of the WaxmanSmits equation to determine ooip in Spindle Field,Colorado. SPE 9382,1980.
[17] SWANSONB F. A simple correlation between permeabilities and mercury capillary pressures. Journal of Petroleum Technology, 2004,33(12):2498-2504.
[18] 彭石林,叶朝辉,刘买利.多孔介质渗透率的NMR测定.波谱学杂志,2006,23(2):271-282. PENG S L,YE C H,LIU M L. Measurement of permeability of porous rock using NMR T2 relaxation distribution. Chinese Journal of Magnetic Resonance,2006,23(2):271-282.
[19] 陈志强,吴思源,白蓉,等.基于流动单元的致密砂岩气储层渗透率测井评价:以川中广安地区须家河组为例.岩性油气藏,2017,29(6):76-83. CHEN Z Q,WU S Y,BAI R,et al. Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:a case from Xujiahe Formation in Guang'an area, central Sichuan Basin. Lithologic Reservoirs,2017,29(6):76-83.
[20] 呼延钰莹,姜福杰,庞雄奇,等.鄂尔多斯盆地东缘康宁地区二叠系致密储层成岩作用与孔隙度演化.岩性油气藏,2019, 31(2):56-65. HUYAN Y Y,JIANG F J,PANG X Q,et al. Diagenesis and porosity evolution of Permian tight reservoirs in Kangning area, eastern margin of Ordos Basin. Lithologic Reservoirs,2019,31(2):56-65.
[21] 曹跃,刘延哲,陈义国,等.鄂尔多斯盆地东韩油区延长组长7-长9油气成藏条件及主控因素.岩性油气藏,2018,30(1):30-38. CAO Y,LIU Y Z,CHEN Y G,et al. Hydrocarbon accumulation conditions and main controlling factors of Chang 7-Chang 9 oil reservoirs of Yanchang Formation in Donghan region,Ordos Basin. Lithologic Reservoirs,2018,30(1):30-38
[22] XU H J,FAN Y R,HU F L,et al. Characterization of pore throat size distribution in tight sandstones with nuclear magnetic resonance and high-pressure mercury intrusion. Energies,2019,12(8):1528.
[23] 王维斌,朱静,马文忠,等.鄂尔多斯盆地周家湾地区长8致密砂岩储层特征及影响因素.岩性油气藏,2017,29(1):51-58. WANG W B,ZHU J,MA W Z,et al. Characteristics and influencing factors of Chang 8 tight sandstone reservoir of Triassic Yanchang Formation in Zhoujiawan area,Ordos Basin. Lithologic Reservoir,2017,29(1):51-58.
[24] REZAEE R,SAEEDI A,CLENNELL B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. Journal of Petroleum Science and Engineering,2012,88:92-99.
[25] PITTMANE D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone. AAPG Bulletin,1992,76(2):191-198.
[26] NOORUDDIN H A,HOSSAIN ME,AL-YOUSEF H,et al. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples. Journal of Petroleum Science and Engineering,2014,121:9-22.
[27] COATES G R,GARDNER J S,MILLER DL. Applying Pulseecho nmr to shaly sand formation evaluation. Spwla Annual Logging Symposium,1994.
[28] MAO Z Q,XIAO L,WANG Z N,et al. Estimation of permeability by integrating nuclear magnetic resonance (NMR) logs with mercury injection capillary pressure (MICP) data in tight gas sands. Applied Magnetic Resonance,2013,44(4):449-468.
[29] KENYONW E,DAY PI,STRALEY C,et al. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones. SPE Formation Evaluation,1988,3(3):622-636.
[30] 朱林奇.核磁共振测井评价致密砂岩储层孔隙结构与渗透率方法研究.武汉:长江大学,2017. ZHU L Q. Study on evaluation of pore structure and permeability of tight sandstone reservoir by nuclear magnetic resonance Logging. Wuhan:Yangtze University,2017.
[31] 陈昱林.泥页岩微观孔隙结构特征及数字岩心模型研究.成都:西南石油大学,2016. CHEN Y L. Study of microscopic pore structure characterization and digital core model of gas shale. Chengdu:Southwest Petroleum University,2016.
[32] 范宜仁,刘建宇,葛新民,等.基于核磁共振双截止值的致密砂岩渗透率评价新方法.地球物理学报,2018,61(4):1628-1638. FAN Y R,LIU J Y,GE X M,et al. Permeability evaluation of tight sandstone based on dual T2 cutoff values measured by NMR. Chinese Journal of Geophysics (in Chinese),2018,61(4):1628-1638.
[33] 赵华伟,宁正福,赵天逸,等.恒速压汞法在致密储层孔隙结构表征中的适用性.断块油气田,2017,24(3):413-416. ZHAO H W,NING Z F,ZHAO T Y,et al. Applicability of ratecontrolled porosimetry experiment to pore structure characterizationof tight oil reservoirs. Fault-Block Oil & Gas Field,2017, 24(3):413-416.
[34] TIMUR A. Nuclear magnetic resonance study of carbonate rocks. Log Analyst,1972,13(5):3-11.
[35] COATES G R,XIAO L Z,PRAMMER M G. NMR logging principles and applications. Houston:Haliburton Energy Services, 2001.
[36] 白松涛,程道解,万金彬,等.砂岩岩石核磁共振T2谱定量表征.石油学报,2016,37(3):382-391. BAI S T,CHENG D J,WAN J B,et al. Quantitative characterization of sandstone NMR T 2 spectrum. Acta Petrolei Sinica, 2016,37(3):382-391.
[1] 张文凯, 施泽进, 田亚铭, 王勇, 胡修权, 李文杰. 川东南志留系小河坝组致密砂岩孔隙类型及成因[J]. 岩性油气藏, 2021, 33(4): 10-19.
[2] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[3] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[4] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[5] 刘桓, 苏勤, 曾华会, 孟会杰, 张小美, 雍运动. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112.
[6] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[7] 郭永伟, 闫方平, 王晶, 褚会丽, 杨建雷, 陈颖超, 张笑洋. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
[8] 王昌进, 张赛, 徐静磊. 基于渗透率修正因子的气体有效扩散系数分形模型[J]. 岩性油气藏, 2021, 33(3): 162-168.
[9] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[10] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[11] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[12] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[13] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[14] 薛培, 张丽霞, 梁全胜, 师毅. 基于逸度与压力计算页岩吸附甲烷的等量吸附热差异分析——以延长探区延长组页岩为例[J]. 岩性油气藏, 2021, 33(2): 171-179.
[15] 周新平, 邓秀芹, 李士祥, 左静, 张文选, 李涛涛, 廖永乐. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .