岩性油气藏 ›› 2020, Vol. 32 ›› Issue (3): 133–143.doi: 10.12108/yxyqc.20200313

• 油气田开发 • 上一篇    下一篇

Ahdeb油田Khasib油藏孔隙结构及其对注水开发的影响

陈明江, 程亮, 陆涛   

  1. 中国石油川庆钻探工程有限公司 地质勘探开发研究院, 成都 610051
  • 收稿日期:2019-05-20 修回日期:2019-09-04 出版日期:2020-05-21 发布日期:2020-04-30
  • 第一作者:陈明江(1983-),男,博士,高级工程师,主要从事石油地质与测井研究工作。地址:(610051)四川省成都市成华区建设北路一段83号地质勘探开发研究院。Email:19092249@qq.com。
  • 基金资助:
    国家重大科技专项“艾哈代布水平井整体注水稳油控水及综合挖潜技术”(编号:2017ZX05030-001-003)资助

Pore structure characterization and its impact on waterflooding development in Khasib reservoir in Ahdeb Oilfield,Iraq

CHEN Mingjiang, CHENG Liang, LU Tao   

  1. Research Institute of Geological Exploration and Development, Chuanqing Drilling Engineering Co. Ltd., CNPC, Chengdu 610051, China
  • Received:2019-05-20 Revised:2019-09-04 Online:2020-05-21 Published:2020-04-30

摘要: 伊拉克Ahdeb油田Khasib油藏为中东地区典型的孔隙型碳酸盐岩油藏,具有高孔、低渗、纵向非均质性极强等特征。为快速厘定因储层孔隙结构“多模态”造成水平井网注采过程中含水上升快、水窜现象严重等突出问题,以岩心观察、铸体薄片鉴定、扫描电镜和压汞毛管压力曲线定量分析为手段,以岩相和岩石物理特征为依据将储层划分为24种岩石类型。在此基础上,提取各岩石类型有效喉道半径,并通过测井曲线对比刻画出岩石类型的空间展布,从而实现有效喉道半径的空间展布刻画。研究表明:①Khasib油藏有效喉道半径纵向差异达数十倍,向下呈明显降低趋势;平面上沿构造长轴由东向西降低,垂直构造长轴表现为北高南低的特征;②Khasib2-1-2 L小层为一套平均厚度0.8 m、以粒间孔为主的内碎屑颗粒灰岩,其平均有效喉道半径7.2 μm,平均渗透率高达278.0 mD,远高于相邻小层,为典型的高渗“贼层”;③Khasib2-1-2 L小层在油田范围内分布稳定,是水流优势通道和注水突窜的主控因素;④典型产水特征曲线、生产测井和过路直井电阻率变化均验证了高渗层窜流特征。研究结果为油藏稳油控水提供了可靠措施依据,并据此提出了合理的开发调整措施建议。

关键词: 碳酸盐岩, 岩石类型, 孔隙结构, 高渗层, 注水突窜, Ahdeb油田

Abstract: Khasib reservoir in Ahdeb Oilfield of Iraq is a typical porous carbonate reservoir in the Middle East, and it is characterized by high porosity, low permeability and strong vertical heterogeneity. To understand the causatives for high water cut and rapid breakthrough of injected water in horizontal wells, this paper focused on the three-dimensional characterization of the multi-modal pore structures. Based on core observation, thin section and SEM identification and quantitative analysis of MICP (Mercury Injection Capillary Pressure) curves, 24 rock types were classified in Khasib reservoir according to lithofacies and petrophysical properties. Spatial distribution of the rock types was characterized by well-log correlation, and effective pore-throat radius was extracted from the MICP curves for each rock type. Thus, the three-dimensional distribution of effective pore-throat radius was visualized. The results show that:(1) Effective pore-throat radius ranging from 0.09 μm to 9.2 μm increased upwards and decreased westwards along the long axis of the anticline(from AD1 block to AD4 block).(2) The layer of Khasib2-1-2 L with its average thickness of 0.8 m is a grainstone dominated by interparticle pores,and its average effective pore-throat radius and permeability are 7.2 μm and 278 mD,respectively,which are ten orders of magnitude higher than that of the adjacent layers.(3) The layer of Khasib 2-1-2 L that is referred to as the highpermeability 'thief zone' is a preferential fluid flow passage and is the control factor of rapid breakthrough of injected water.(4) The results were confirmed by typical water control diagnostic plot,production logging as well as resistivity variation observed in vertical wells drilled through the reservoir. The research results provide a reliable basis for oil stabilization and water control in the reservoir,and based on this,reasonable development adjustment measures were proposed.

Key words: carbonate reservoir, rock type, pore structure, high-permeability zone, rapid water breakthrough, Ahdeb Oilfield

中图分类号: 

  • TE122.2
[1] 罗蛰潭,王允诚.油气储集层的孔隙结构.北京:科学出版社, 1986. LUO Z T,WANG Y C. Pore structure of petroleum reservoirs. Beijing:Science Press,1986.
[2] CATHY H,VOLKER V,SIMON T,et al. Pore system characterization in heterogeneous carbonates:an alternative approach to widely-used rock-typing methodologies. Marine and Petroleum Geology,2010,27:772-793.
[3] 马旭鹏.储层物性参数与其微观孔隙结构的内在联系.油气藏评价与开发,2010,33(3):216-219. MAX P. Internal relationship between physical property and micropore structure of reservoir. Reservoir Evaluation and Development,2010,33(3):216-219.
[4] 陈欢庆,曹晨,梁淑贤,等.储层孔隙结构研究进展.天然气地球科学,2013,23(2):227-237. CHEN H Q,CAO C,LIANG S X,et al. Research advances on reservoir pores. Natural Gas Geoscience,2013,23(2):227-237.
[5] 郝乐伟,王琪,唐俊.储层岩石微观孔隙结构研究方法与理论综述.岩性油气藏,2013,25(5):123-128. HAO L W,WANG Q,TANG J. Research progress of reservoir microscopic pore structure. Lithologic reservoirs,2013,25(5):123-128.
[6] 熊敏,王勤田.盘河断块区孔隙结构与驱油效率.石油与天然气地质,2003,24(1):42-54. XIONG M,WANG Q T. Pore structure and oil displacement efficiency in Panhe fault-block area. Oil & Gas Geology,2003,24(1):42-54.
[7] 罗月明,刘伟新,谭学群,等.鄂尔多斯大牛地气田上古生界储层成岩作用评价.石油实验地质,2007,29(4):384-390. LUO Y M,LIU W X,TAN X Q,et al. Diagenesis and reservoir evaluation on the Upper Paleozoic reservoir sandstones in Daniudi gas field,the Ordos Basin. Petroleum Geology&Experiment, 2007,29(4):384-390.
[8] ANNA B,SUSANNE G,PETER K. Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones:Evidence from Cretceous sandstones of Sawan gas field,Pakistan. AAPG Bulletin,2009,93(5):595-615.
[9] 庄锡进,胡宗全,朱筱敏.准噶尔盆地西北缘侏罗系储层.古地理学报,2002,4(1):90-96. ZHUANG X J,HU Z Q,ZHU X M. Jurassic reservoir of the northwest edge in Junggar Basin. Journal of Palaeogeography, 2002,4(1):90-96.
[10] PHILIP H N. Pore-throat sizes in sandstones,tight sandstones, and shales. AAPG Bulletin,2009,93(3):329-340.
[11] WEGER R J,EBERLI G P,BAECHLE G T,et al. Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bulletin,2009,93(10):1297-1317.
[12] 于雯泉,李丽,方涛,等.断陷盆地深层低渗透天然气储层孔隙演化定量研究.天然气地球科学,2010,21(3):397-405. YU W Q,LI L,FANG T,et al. Quantitative research for porosity evolution in low permeability deep gas reservoir of rift-subsidence basin. Natural Gas Geoscience,2010,21(3):397-405.
[13] 刘航宇,田中元,徐振永.基于分形特征的碳酸盐岩储层孔隙结构定量评价.岩性油气藏,2017,29(5):97-105. LIU H Y,TIAN Z Y,XU Z Y. Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics. Lithologic Reservoirs,2017,29(5):97-105.
[14] 葛小波,李吉君,卢双舫,等.基于分形理论的致密砂岩储层微观孔隙结构表征:以冀中坳陷致密砂岩储层为例.岩性油气藏,2017,29(5):106-112. GE X B,LI J J,LU S F,et al. Fractal characteristics of tight sandstone reservoir using mercury intrusion capillary pressure:a case of tight sandstone reservoir in Jizhong Depression. Lithologic Reservoirs,2017,29(5):106-112.
[15] 谢武仁,杨威,杨光,等.川中地区上三叠统须家河组砂岩储层孔隙结构特征.天然气地球科学,2010,21(3):435-440. XIE W R,YANG W,YANG G,et al. Pore structure features of sandstone reservoirs in the Upper Triassic Xujiahe Formation in the central part of Sichuan Basin. Natural Gas Geoscience, 2010,21(3):435-440.
[16] 唐海发,彭仕宓,赵彦超.大牛地气田盒2+3段致密砂岩储层微观孔隙结构特征及其分类评价.矿物岩石,2006,26(3):107-113. TANG H F,PENG S B,ZHAO Y C. Characteristics of pore structure and reservoir evaluation in H2+3 tight gas reservoir, Daniudi Gas field. Journal of Mineralogy and Petrology,2006, 26(3):107-113.
[17] 姜均伟,朱宇清,徐星,等.伊拉克H油田碳酸盐岩储层的孔隙结构特征及其对电阻率的影响.地球物理学进展,2015,30(1):203-209. JIANG J W,ZHU Y Q,XU X,et al. Pore structure characteristics of the carbonate reservoir and their influence on electric properties in H oilfield,Iraq. Progress in Geophysics (in Chinese), 2015,30(1):203-209.
[18] 邓虎成,周文,郭睿,等.伊拉克艾哈代布油田中-下白垩统碳酸盐岩储层孔隙结构及控制因素.岩石学报,2014,30(3):801-812. DENG H C,ZHOU W,GUO R,et al. Pore structure characteristics and control factors of carbonate reservoirs:the MiddleLower Cretaceous formation,Ahdeb Oilfield,Iraq. Acta Petrologica Sinica,2014,30(3):801-812.
[19] DUTTA D,AL-MURAIKHI H R,TIWARY A,et al. Pore system characterization of a low permeability reservoir and its related development and production issues:a case study from Ratawi limestone,Umm Gudair Field,Kuwai. SPE 175363,2015.
[20] 何文祥,杨乐,马超亚,等.特低渗透储层微观孔隙结构参数对渗流行为的影响:以鄂尔多斯盆地长6储层为例.天然气地球科学,2011,22(3):477-481. HE W X,YANG L,MA C Y,et al. Effect of micro-pore structure parameter on seepage characteristics in ultra-low permeability reservoir:a case from Chang 6 reservoir of Ordos Basin. Natural Gas Geoscience,2011,22(3):477-481.
[21] 蔡忠.储集层孔隙结构与驱油效率关系研究.石油勘探与开发,2000,27(6):45-49. CAI Z. Relationship between reservoir pore structure and oil displacement efficiency. Petroleum Exploration and Development,2000,27(6):45-49.
[22] 卢明国,童小兰.江汉盆地新沟嘴组砂岩孔隙结构与产油潜力.大庆石油地质与开发,2007,26(4):31-34. LU M G,TONG X L. Characteristics of pore structures and oil production potential of sandstone reservoir of Paleogene Xingouzui Formation in Jianghan Basin. Petroleum Geology&Development in Daqing,2007,26(4):31-34.
[23] 李继红,曲志浩,陈清华.注水开发对孤岛油田储层微观结构的影响.石油实验地质,2001,23(4):424-428. LI J H,QU Z H,CHEN Q H. Effect of injecting water development on microstructure of reservoirs in Gudao Oilfield. Petroleum Geology&Experiment,2001,23(4):424-428.
[24] 闫国亮,孙建孟,刘学锋,等.储层岩石微观孔隙结构特征及其对渗透率影响.测井技术,2014,38(1):28-32. YAN G L,SUN J M,LIU X F,et al. Characterization of microscopic pore structure of reservoir rock and its effect on permeability. Well Logging Technology,2014,38(1):28-32.
[25] 王小敏,樊太亮.碳酸盐岩储层渗透率研究现状与前瞻.地质学前缘,2013,20(5):166-174. WANG X M,FAN T L. Progress of research on permeability of carbonate rocks. Earth Science Frontiers,2013,20(5):166-174.
[26] 陈明江,黄婷婷,颜其彬,等.伊拉克Ahdeb油田稠油层测井识别及分布特征研究新方法.测井技术,2017,41(2):156-164. CHEN M J,HUANG T T,YAN Q B,et al. A new method to identify heavy oil and characterize its distribution with well logs in Ahdeb Oilfield,Iraq. Well Logging Techlology,2017,41(2):156-164.
[27] 杜洋,汪娟,方健,等.伊拉克中部上白垩统Khasib组岩溶储层演化及异常高渗层成因.地质科学,2015,50(4):1218-1234. DU Y,WANG J,FANG J,et al. The karst reservoir evolution and genesis of abnormal high permeability zone of the Upper Cretaceous Khasib Formation in central Iraq. Chinese Journal of Geology,2015,50(4):1218-1234.
[28] 汪娟,杜洋,熊舒,等.伊拉克中部A油田上白垩统Khasib组储层流动单元研究,地质科技情报,2016,35(5):154-162. WANG J,DU Y,XIONG S,et al. Flow unit identification and distribution in Upper Cretaceous of the Khasib Formation in A oilfield,Central Iraq. Geological Science and Technology Information,2016,35(5):154-162.
[29] DUNHAM R J. Classification of carbonate rocks according to depositional texture. AAPG Memoir 1,1962:108-121.
[30] ARCHIE G E. Classification of carbonate reservoir rocks and petrophysical considerations. AAPG Bulletin,1952,36(2):278-298.
[31] LUCIA F J. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bulletin, 1995,79(9):1275-1300.
[32] CHEKANI M,KHARRAT R. Reservoir rock typing in a carbonate reservoir-cooperation of core and log data:case study. SPE 123703,2009.
[33] 颜其彬,陈明江,汪娟,等.碳酸盐岩储层渗透率与孔隙度、喉道半径的关系.天然气工业,2015,35(6):30-36. YAN Q B,CHEN M J,WANG J,et al.Correlation among permeability,porosity and pore throat radius of carbonate reservoirs. Natural Gas Industry,2015,35(6):30-36.
[1] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[2] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[3] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[4] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[5] 李长海, 赵伦, 刘波, 赵文琪, 王淑琴, 李建新, 郑天宇, 李伟强. 滨里海盆地东缘北特鲁瓦油田石炭系碳酸盐岩储层裂缝网络连通性评价[J]. 岩性油气藏, 2024, 36(2): 113-123.
[6] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[7] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[8] 王雪柯, 王震, 计智锋, 尹微, 姜仁, 侯珏, 张艺琼. 滨里海盆地东缘石炭系盐下碳酸盐岩油气藏成藏规律与勘探技术[J]. 岩性油气藏, 2023, 35(6): 54-62.
[9] 罗贝维, 尹继全, 胡广成, 陈华, 康敬程, 肖萌, 朱秋影, 段海岗. 阿联酋西部地区白垩系森诺曼阶高孔渗灰岩储层特征及控制因素[J]. 岩性油气藏, 2023, 35(6): 63-71.
[10] 范蕊, 刘卉, 杨沛广, 孙星, 马辉, 郝菲, 张珊珊. 阿曼盆地A区白垩系泥岩充填型碳酸盐岩溶蚀沟谷识别技术[J]. 岩性油气藏, 2023, 35(6): 72-81.
[11] 刘亚明, 王丹丹, 田作基, 张志伟, 王童奎, 王朝锋, 阳孝法, 周玉冰. 巴西桑托斯盆地复杂碳酸盐岩油田火成岩发育特征及预测方法[J]. 岩性油气藏, 2023, 35(6): 127-137.
[12] 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158.
[13] 王建功, 李江涛, 李翔, 高妍芳, 张平, 孙秀建, 白亚东, 左洺滔. 柴西地区新生界湖相微生物碳酸盐岩岩相组合差异性及控制因素[J]. 岩性油气藏, 2023, 35(3): 1-17.
[14] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[15] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .