岩性油气藏 ›› 2020, Vol. 32 ›› Issue (3): 122–132.doi: 10.12108/yxyqc.20200312

• 勘探技术 • 上一篇    下一篇

基于高压压汞和核磁共振的致密砂岩渗透率预测

程辉1, 王付勇1, 宰芸1, 周树勋2   

  1. 1. 中国石油大学(北京)非常规油气科学技术研究院, 北京 102249;
    2. 中国石油长庆油田分公司 油田开发事业部, 西安 710021
  • 收稿日期:2019-10-08 修回日期:2019-12-20 出版日期:2020-05-21 发布日期:2020-04-30
  • 第一作者:程辉(1996-),男,中国石油大学(北京)在读硕士研究生,研究方向为非常规油气藏开发与提高采收率。地址:(102249)北京市昌平区中国石油大学(北京)非常规油气科学技术研究院。Email:1650865147@qq.com
  • 通信作者: 王付勇(1985-),男,博士,副研究员,主要从事非常规油气藏开发与提高采收率、油气藏动态监测等方面的研究工作。Email:wangfuyong@cup
  • 基金资助:
    国家自然科学基金项目“表面活性剂在致密油藏裂缝-微纳米孔隙中的多尺度渗吸驱油机理研究”(编号:51874320)和中国石油大学(北京)青年拔尖人才科研启动基金项目“致密油藏渗吸提高采收率机理研究”(编号:2462017BJB11)联合资助

Prediction of tight sandstone permeability based on high-pressure mercury intrusion(HPMI)and nuclear magnetic resonance(NMR)

CHENG Hui1, WANG Fuyong1, ZAI Yun1, ZHOU Shuxun2   

  1. 1. The Unconventional Oil and Gas Institute, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Oilfield Development Division, PetroChina Changqing Oilfield Company, Xi'an 710021, China
  • Received:2019-10-08 Revised:2019-12-20 Online:2020-05-21 Published:2020-04-30

摘要: 分析影响致密砂岩渗透率的主控因素并准确预测致密砂岩渗透率对致密油气藏的开发具有重要意义。以鄂尔多斯盆地延长组致密砂岩为研究对象,基于高压压汞和核磁共振对致密砂岩渗透率主控因素进行了研究,分别评价并优选了更适用于致密砂岩的基于高压压汞和核磁共振的渗透率预测模型。结果表明:影响致密砂岩渗透率的主要因素是孔喉半径,其中中值孔喉半径与致密砂岩渗透率相关性最强;与核磁共振T2加权平均值相比,T2几何均值与致密砂岩渗透率的相关性更强;在3种不同的核磁共振渗透率预测模型中,SDR-REV模型的预测效果要优于SDR模型和KCT2w模型;在3种不同的高压压汞渗透率预测模型中,基于r40r45的Winland模型渗透率预测精度较高。研究成果对鄂尔多斯盆地延长组致密砂岩的进一步有效开发具有指导意义。

关键词: 致密砂岩, 渗透率, 高压压汞, 核磁共振, 延长组, 鄂尔多斯盆地

Abstract: It is of great significance for the development of tight oil and gas reservoir to analyze the main factors affecting the permeability of tight sandstone and accurately predict the permeability of tight sandstone. Taking the tight sandstone from Yanchang Formation in Ordos Basin as the research subject,the main controlling factors of tight sandstone permeability were studied based on high-pressure mercury intrusion(HPMI) and nuclear magnetic resonance(NMR). The permeability prediction models based on NMR and HPMI were evaluated and optimized respectively. The results show that pore-throat size is the main factor affecting tight sandstone permeability,and the median pore-throat radius size has strongest correlation with tight sandstone permeability. Compared with NMR weighted average T2,geometric mean T2 has stronger correlation with tight sandstone permeability. Among the three different NMR permeability prediction models,SDR-REV model has better permeability prediction results compared with SDR model and KCT2w model. Among the three different HPMI permeability prediction models,the Winland model based on r40 and r45 has the highest permeability prediction results. The research results have guiding significance for the further effective development of tight sandstones of Yanchang Formation in Ordos Basin.

Key words: tight sandstone, permeability, high-pressure mercury intrusion, nuclear magnetic resonance, Yanchang Formation, Ordos Basin

中图分类号: 

  • TE122.2
[1] 贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景.石油学报,2012,33(3):343-350. JIA C Z,ZOU C N,LI J Z,et al. Assessment criteria,main types, basic features and resource prospects of the tight oil in China. Acta Petrolei Sinica,2012,33(3):343-350.
[2] 贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景.石油勘探与开发,2012,39(2):129-136. JIA C Z,ZHENG M,ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development,2012,39(2):129-136.
[3] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例,石油学报, 2012,33(2):173-187. ZOU C N,ZHU R K,WU S T,et al. Types,characteristics,genesis and prospects of conventional and unconventionalhydrocarbon accumulations. Acta Petrolei Sinica,2012,33(2):173-187.
[4] 闫伟鹏,杨涛,马洪,等.中国陆相致密油成藏模式及地质特征.新疆石油地质,2014,35(2):131-136. YAN W P,YANG T,MA H,et al. The tight oil accumulation model and geological characteristics in continental sedimentary basins of China. Xinjiang Petroleum Geology,2014,35(2):131-136.
[5] U. S. Energy Information Administration. How much shale (tight) oil is produced in the United States?[2019-09-04] https://www.eia.gov/tools/faqs/faq.php?id=847&t=6.
[6] 胡素云,朱如凯,吴松涛,等.低油价背景下中国陆相致密油的效益勘探开发.石油勘探与开发,2018,45(4):1-12. HU S Y,ZHU R K,WU S T,et al. The exploration and development of continental tight oil in China under the background of low oil price. Petroleum Exploration and Development,2018, 45(4):1-12.
[7] 杜金虎,刘合,马德胜,等.试论中国陆相致密油有效开发技术.石油勘探与开发,2014,41(2):198-205. DU J H,LIU H,MA D S,et al. Discussion on effective development techniques for continental tight oil in China. Petroleum Exploration and Development,2014,41(2):198-205.
[8] 杨智,付金华,郭秋麟,等.鄂尔多斯盆地三叠系延长组陆相致密油发现、特征及潜力.中国石油勘探,2017,22(6):9-15. YANG Z,FU J H,GUO Q L,et al. Discovery,characteristics and resource potential of continental tight oil in Triassic Yanchang Formation,Ordos Basin. China Petroleum Exploration, 2017,22(6):9-15.
[9] ZOU C N,ZHU R K,LIU K Y,et al. Tight gas sandstone reservoirs in China:characteristics and recognition criteria. Journal of Petroleum Science and Engineering,2012,88:82-91.
[10] LIU M,XIE R H,LI C X,et al. A new method for determining tight sandstone permeability based on the characteristic Parameters of the NMR T 2 distribution. Applied Magnetic Resonance, 2017,48(10):1009-1029.
[11] WANG F Y,YANG K,CAI J C. Fractal characterization of tight oil reservoir pore structure using nuclear magnetic resonance and mercury intrusion porosimetry. Fractals,2018,26(2):1840017.
[12] SHAO X H,PANG X Q,LI H,et al. Fractal analysis of pore network in tight gas sandstones using NMR method:a case study from the Ordos Basin,China. Energy & Fuels,2017,31(10):10358-10368.
[13] 公言杰,柳少波,赵孟军,等.核磁共振与高压压汞实验联合表征致密油储层微观孔喉分布特征.石油实验地质,2016,38(3):389-394. GONG Y J,LIU S B,ZHAO M J,et al.Characterization of micro pore throat radius distributionin tight oil reservoirs by NMR and high pressure mercury injection. Petroleum Geology & Experiment,2016,38(3):389-394.
[14] 严强,张云峰,付航,等.运用高压压汞及扫描电镜多尺度表征致密砂岩储层微纳米级孔喉特征:以渤海湾盆地沾化凹陷义176区块沙四段致密砂岩储层为例.石油实验地质,2018, 40(2):280-287. YAN Q,ZHANG Y F,FU H,et al. High pressure mercury injection and scanning electron microscopy applied tocharacterize micro-and nano-scale pore throats in tight sandstone reservoirs:a case study of the fourth member of Shahejie Formationin Yi176 block,Zhanhua Sag,Bohai Bay Basin. Petroleum Geology & Experiment,2018,40(2):280-287.
[15] XIAO L,MAO Z Q,ZOU C C,et al. A new methodology of constructing pseudo capillary pressure (pc) curves from nuclear magnetic resonance (NMR) logs. Journal of Petroleum Science and Engineering,2016,147:154-167.
[16] KOLODZIES. Analysis of pore throat size and use of the WaxmanSmits equation to determine ooip in Spindle Field,Colorado. SPE 9382,1980.
[17] SWANSONB F. A simple correlation between permeabilities and mercury capillary pressures. Journal of Petroleum Technology, 2004,33(12):2498-2504.
[18] 彭石林,叶朝辉,刘买利.多孔介质渗透率的NMR测定.波谱学杂志,2006,23(2):271-282. PENG S L,YE C H,LIU M L. Measurement of permeability of porous rock using NMR T2 relaxation distribution. Chinese Journal of Magnetic Resonance,2006,23(2):271-282.
[19] 陈志强,吴思源,白蓉,等.基于流动单元的致密砂岩气储层渗透率测井评价:以川中广安地区须家河组为例.岩性油气藏,2017,29(6):76-83. CHEN Z Q,WU S Y,BAI R,et al. Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:a case from Xujiahe Formation in Guang'an area, central Sichuan Basin. Lithologic Reservoirs,2017,29(6):76-83.
[20] 呼延钰莹,姜福杰,庞雄奇,等.鄂尔多斯盆地东缘康宁地区二叠系致密储层成岩作用与孔隙度演化.岩性油气藏,2019, 31(2):56-65. HUYAN Y Y,JIANG F J,PANG X Q,et al. Diagenesis and porosity evolution of Permian tight reservoirs in Kangning area, eastern margin of Ordos Basin. Lithologic Reservoirs,2019,31(2):56-65.
[21] 曹跃,刘延哲,陈义国,等.鄂尔多斯盆地东韩油区延长组长7-长9油气成藏条件及主控因素.岩性油气藏,2018,30(1):30-38. CAO Y,LIU Y Z,CHEN Y G,et al. Hydrocarbon accumulation conditions and main controlling factors of Chang 7-Chang 9 oil reservoirs of Yanchang Formation in Donghan region,Ordos Basin. Lithologic Reservoirs,2018,30(1):30-38
[22] XU H J,FAN Y R,HU F L,et al. Characterization of pore throat size distribution in tight sandstones with nuclear magnetic resonance and high-pressure mercury intrusion. Energies,2019,12(8):1528.
[23] 王维斌,朱静,马文忠,等.鄂尔多斯盆地周家湾地区长8致密砂岩储层特征及影响因素.岩性油气藏,2017,29(1):51-58. WANG W B,ZHU J,MA W Z,et al. Characteristics and influencing factors of Chang 8 tight sandstone reservoir of Triassic Yanchang Formation in Zhoujiawan area,Ordos Basin. Lithologic Reservoir,2017,29(1):51-58.
[24] REZAEE R,SAEEDI A,CLENNELL B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. Journal of Petroleum Science and Engineering,2012,88:92-99.
[25] PITTMANE D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone. AAPG Bulletin,1992,76(2):191-198.
[26] NOORUDDIN H A,HOSSAIN ME,AL-YOUSEF H,et al. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples. Journal of Petroleum Science and Engineering,2014,121:9-22.
[27] COATES G R,GARDNER J S,MILLER DL. Applying Pulseecho nmr to shaly sand formation evaluation. Spwla Annual Logging Symposium,1994.
[28] MAO Z Q,XIAO L,WANG Z N,et al. Estimation of permeability by integrating nuclear magnetic resonance (NMR) logs with mercury injection capillary pressure (MICP) data in tight gas sands. Applied Magnetic Resonance,2013,44(4):449-468.
[29] KENYONW E,DAY PI,STRALEY C,et al. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones. SPE Formation Evaluation,1988,3(3):622-636.
[30] 朱林奇.核磁共振测井评价致密砂岩储层孔隙结构与渗透率方法研究.武汉:长江大学,2017. ZHU L Q. Study on evaluation of pore structure and permeability of tight sandstone reservoir by nuclear magnetic resonance Logging. Wuhan:Yangtze University,2017.
[31] 陈昱林.泥页岩微观孔隙结构特征及数字岩心模型研究.成都:西南石油大学,2016. CHEN Y L. Study of microscopic pore structure characterization and digital core model of gas shale. Chengdu:Southwest Petroleum University,2016.
[32] 范宜仁,刘建宇,葛新民,等.基于核磁共振双截止值的致密砂岩渗透率评价新方法.地球物理学报,2018,61(4):1628-1638. FAN Y R,LIU J Y,GE X M,et al. Permeability evaluation of tight sandstone based on dual T2 cutoff values measured by NMR. Chinese Journal of Geophysics (in Chinese),2018,61(4):1628-1638.
[33] 赵华伟,宁正福,赵天逸,等.恒速压汞法在致密储层孔隙结构表征中的适用性.断块油气田,2017,24(3):413-416. ZHAO H W,NING Z F,ZHAO T Y,et al. Applicability of ratecontrolled porosimetry experiment to pore structure characterizationof tight oil reservoirs. Fault-Block Oil & Gas Field,2017, 24(3):413-416.
[34] TIMUR A. Nuclear magnetic resonance study of carbonate rocks. Log Analyst,1972,13(5):3-11.
[35] COATES G R,XIAO L Z,PRAMMER M G. NMR logging principles and applications. Houston:Haliburton Energy Services, 2001.
[36] 白松涛,程道解,万金彬,等.砂岩岩石核磁共振T2谱定量表征.石油学报,2016,37(3):382-391. BAI S T,CHENG D J,WAN J B,et al. Quantitative characterization of sandstone NMR T 2 spectrum. Acta Petrolei Sinica, 2016,37(3):382-391.
[1] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[2] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[3] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[4] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[5] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[6] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[7] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[8] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[9] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[10] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[11] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[12] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
[13] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[14] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
[15] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .