岩性油气藏 ›› 2024, Vol. 36 ›› Issue (2): 113–123.doi: 10.12108/yxyqc.20240211

• 地质勘探 • 上一篇    

滨里海盆地东缘北特鲁瓦油田石炭系碳酸盐岩储层裂缝网络连通性评价

李长海1, 赵伦2, 刘波3, 赵文琪2, 王淑琴2, 李建新2, 郑天宇2, 李伟强4   

  1. 1. 中国石化国际石油勘探开发有限公司, 北京 100029;
    2. 中国石油勘探开发研究院, 北京 100083;
    3. 北京大学 地球与空间科学学院, 北京 100871;
    4. 中国石油杭州地质研究院, 杭州 310023
  • 收稿日期:2022-10-11 修回日期:2022-11-14 发布日期:2024-03-06
  • 作者简介:李长海(1992—),男,博士,工程师,主要从事裂缝表征与预测方面的研究工作。地址:(100029)北京市朝阳区惠新东街甲6号。Email:chhli.sipc@sinopec.com。
  • 基金资助:
    中国石油天然气股份有限公司“十四五”前瞻性基础性重大科技项目“中亚裂缝孔隙型碳酸盐岩油藏稳油控水关键技术研究与应用”(编号:2022DJ3210)资助。

Connectivity of fracture networks of Carboniferous carbonate reservoirs in North Truva Oilfield,eastern margin of Precaspian Basin

LI Changhai1, ZHAO Lun2, LIU Bo3, ZHAO Wenqi2, WANG Shuqin2, LI Jianxin2, ZHENG Tianyu2, LI Weiqiang4   

  1. 1. Sinopec International Petroleum Exploration and Production Corporation, Beijing 100029, China;
    2. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    3. School of Earth and Space Sciences, Peking University, Beijing 100871, China;
    4. PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China
  • Received:2022-10-11 Revised:2022-11-14 Published:2024-03-06

摘要: 基于岩心、成像测井及裂缝网络建模结果,应用拓扑学理论,对滨里海盆地东缘北特鲁瓦油田石炭系碳酸盐岩储层裂缝网络的连通性进行了评价,并分析了其对油田开发的影响。研究结果表明: ①滨里海盆地东缘北特鲁瓦油田石炭系碳酸盐岩储层裂缝切割类型可划分为高高切割、高低切割和低低切割,研究区A2,A3,G1,G2,G3及G4小层裂缝切割较为发育,且主要分布在构造高部位。②裂缝网络连通性可通过连通体面积占比、裂缝体密度、裂缝的平均长度和平均节点数4个参数进行定量评价,根据连通体面积大小、裂缝体密度大小及裂缝类型可对裂缝连通体进行定性分析和命名,研究区A2小层主要发育低低大连通体、高中大连通体和高高大连通体。③裂缝网络连通性和储层物性的耦合作用是油田水窜的原因,裂缝网络连通性主要与裂缝长度和裂缝体密度有关。

关键词: 碳酸盐岩, 裂缝长度, 裂缝体密度, 连通性, 水窜现象, 石炭系, 北特鲁瓦油田, 滨里海盆地东缘

Abstract: Based on the data of core,imaging logging,and fracture network modeling,topology theory was applied to evaluate the connectivity of fracture networks of Carboniferous carbonate reservoirs in North Truva Oilfield,the eastern margin of Precaspian Basin,and its impacts on oilfield development were analyzed. The results show that:(1)The types of fracture cutting of Carboniferous carbonate reservoirs in North Truva Oilfield of eastern margin of Precaspian Basin can be divided into high-high cutting,high-low cutting,and low-low cutting. The fracture cutting in the sublayers A2,A3,G1,G2,G3,and G4 is relatively developed and mainly distributed in the high structural parts.(2)The connectivity of fracture networks can be quantitatively evaluated through four parameters:the proportion of connected area,fracture fracture volume density,average length of fractures,and average number of nodes. The connected area,fracture volume density,and fracture type can be used to qualitatively analyze and name the fracture connected units. The sublayer A2 in the study area mainly develops low-low large connected units,high-medium large connected units,and high-high large connected units. (3)The coupling effect of fracture network connectivity and reservoir properties is the origin of oilfield water channeling,and fracture network connectivity is mainly related to fracture length and fracture volume density.

Key words: carbonate, fractures length, fracture volume density, connectivity, water channeling phenomenon, Carboniferous, North Truva Oilfiled, eastern margin of Precaspian Basin

中图分类号: 

  • TE122.2
[1] ADEQ Q M,YUSOFF W I B W. Porosity and permeability analysis from well logs and core in fracture,vugy and intercrystalline carbonate reservoirs[J]. Journal of Aquaculture Research & Development,2015,6(10):1-5.
[2] BAGRINTSEVA K I. Carbonate reservoir rocks[M]. New Jersey:John Wiley & Sons,2015:1-10.
[3] 熊加贝,何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J].岩性油气藏,2022,34(1):187-200. XIONG Jiabei,HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields[J]. Lithologic Reservoirs,2022,34(1):187-200.
[4] 孙金声,白英睿,程荣超,等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J].石油勘探与开发,2021,48(3):630-638. SUN Jinsheng,BAI Yingrui,CHENG Rongchao,et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development,2021,48(3):630-638.
[5] 穆龙新. 储层裂缝预测研究[M]. 北京:石油工业出版社, 2009:1-347.MU Longxin. Study on reservoir fracture prediction[M]. Beijing:Petroleum Industry Press,2009:1-347.
[6] NELSON R. Geologic analysis of naturally fractured reservoirs[M]. New York:Elsevier,1985:1-330.
[7] 陈袁,廖发明,吕波,等. 塔里木盆地迪那2气田多信息分级次离散裂缝表征及建模[J].岩性油气藏,2022,34(4):1-13. CHEN Yuan,LIAO Faming,LYU Bo,et al. Discrete fracture characterization and multi-scale modeling with different information in Dina-2 gas field,Tarim Basin[J]. Lithologic Reservoirs,2022,34(4):1-13.
[8] 邬光辉,岳国林,师骏,等. 塔中奥陶系碳酸盐岩裂缝连通性分析及其意义[J].中国西部油气地质,2006,2(2):156-159. WU Guanghui,YUE Guolin,SHI Jun,et al. Analysis of connectivity of fractures of Ordovician carbonates and its implication in central Tarim Basin[J]. West China Petroleum Geosciences,2006,2(2):156-159.
[9] 李玮,孙文峰,唐鹏,等. 基于拓扑结构的岩石裂缝网络表征方法[J]. 天然气工业,2017,37(6):22-27. LI Wei,SUN Wenfeng,TANG Peng,et al. A method for rock fracture network characterization based on topological structure[J]. Natural Gas Industry,2017,37(6):22-27.
[10] GHOSH K,MITRA S. Two-dimensional simulation of controls of fracture parameters on fracture connectivity[J]. AAPG Bulletin,2009,93(11):1517-1533.
[11] SÆVIK P N,NIXON C W. Inclusion of topological measurements into analytic estimates of effective permeability in fractured media[J]. Water Resources Research,2017,53(11):9424-9443.
[12] SANDERSON D J,NIXON C W. Topology,connectivity and percolation in fracture networks[J]. Journal of Structural Geology,2018,115:167-177.
[13] 李长海,赵伦,李建新,等. 滨里海盆地东缘构造缝形成期次及低角度构造缝成因[J]. 特种油气藏,2019,26(3):56-61. LI Changhai,ZHAO Lun,LI Jianxin,et al. Structural fracture formation stages in the eastern margin of the Caspian Basin and genesis of low-angle structural fracture[J]. Special Oil & Gas Reservoirs,2019,26(3):56-61.
[14] 张荻萩,王淑琴,赵文琪,等. 控制碳酸盐岩油藏单井产能的主要地质因素分析:以哈萨克斯坦北特鲁瓦油田KT-I油层组为例[J].岩石学报,2016,32(3):903-914. ZHANG Diqiu,WANG Shuqin,ZHAO Wenqi,et al. The main geological control factors of single well productivity for carbonate reservoir:Take the reservoir formation KT-Ⅰ in North Truva field,Kazakhstan as example[J]. Acta Petrologica Sinica, 2016,32(3):903-914.
[15] 李伟强,穆龙新,赵伦,等. 滨里海盆地东缘石炭系碳酸盐岩储集层孔喉结构特征及对孔渗关系的影响[J]. 石油勘探与开发,2020,47(5):958-971. LI Weiqiang,MU Longxin,ZHAO Lun,et al. Pore-throat structure characteristics and their impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin[J]. Petroleum Exploration and Development,2020,47(5):958-971.
[16] ZHAO Lun,WANG Shuqin,ZHAO Wenqi,et al. Combination and distribution of reservoir space in complex carbonate rocks[J]. Petroleum Science,2016,13(3):450-462.
[17] 吕文雅,曾联波,张俊辉,等. 川中地区中下侏罗统致密油储层裂缝发育特征[J]. 地球科学与环境学报,2016,38(2):226-234. LYU Wenya,ZENG Lianbo,ZHANG Junhui,et al. Development characteristics of fractures in the Middle-Lower Jurassic tight oil reservoirs in central Sichuan Basin[J]. Journal of Earth Sciences and Environment,2016,38(2):226-234.
[18] 李长海,赵伦,刘波,等. 微裂缝研究进展、意义及发展趋势[J]. 天然气地球科学,2020,31(3):402-416. LI Changhai,ZHAO Lun,LIU Bo,et al. Research status,significance and development trend of microfrctures[J]. Natural Gas Geosciece,2020,31(3):402-416.
[19] DERSHOWITZ W S,EINSTEIN H H. Characterizing rock joint geometry with joint system models[J]. Rock mechanics and rock engineering,1988,21(1):21-51.
[20] 周文,尹太举,张亚春,等. 蚂蚁追踪技术在裂缝预测中的应用:以青西油田下沟组为例[J]. 岩性油气藏,2015,27(6):111-118. ZHOU Wen,YIN Taiju,ZHANG Yachun,et al. Application of ant tracking technology to fracture prediction:A case study from Xiagou Formation in Qingxi Oilfield[J]. Lithologic Reservoirs,2015,27(6):111-118.
[21] 王蓓,刘向君,司马立强,等. 磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用[J]. 岩性油气藏,2019,31(2):124-133. WANG Bei,LIU Xiangjun,SIMA Liqiang,et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application[J]. Lithologic Reservoirs,2019,31(2):124-133.
[22] LI Changhai,ZHAO Lun,LIN Bo,et al. Origin,distribution and implications on production of bedding-parallel fractures:A case study from the Carboniferous KT-Ⅰ Formation in the NT oilfield,Precaspian Basin,Kazakhstan[J]. Journal of Petroleum Science and Engineering,2021,196:107655.
[23] 肖阳,刘国平,韩春元,等. 冀中坳陷深层碳酸盐岩储层天然裂缝发育特征与主控因素[J]. 天然气工业,2018,38(11):33-42. XIAO Yang,LIU Guoping,HAN Chunyuan,et al. Development characteristics and main controlling factors of natural fractures in deep carbonate reservoirs in the Jizhong Depression[J]. Natural Gas Industry,2018,38(11):33-42.
[1] 罗贝维, 尹继全, 胡广成, 陈华, 康敬程, 肖萌, 朱秋影, 段海岗. 阿联酋西部地区白垩系森诺曼阶高孔渗灰岩储层特征及控制因素[J]. 岩性油气藏, 2023, 35(6): 63-71.
[2] 王雪柯, 王震, 计智锋, 尹微, 姜仁, 侯珏, 张艺琼. 滨里海盆地东缘石炭系盐下碳酸盐岩油气藏成藏规律与勘探技术[J]. 岩性油气藏, 2023, 35(6): 54-62.
[3] 范蕊, 刘卉, 杨沛广, 孙星, 马辉, 郝菲, 张珊珊. 阿曼盆地A区白垩系泥岩充填型碳酸盐岩溶蚀沟谷识别技术[J]. 岩性油气藏, 2023, 35(6): 72-81.
[4] 刘亚明, 王丹丹, 田作基, 张志伟, 王童奎, 王朝锋, 阳孝法, 周玉冰. 巴西桑托斯盆地复杂碳酸盐岩油田火成岩发育特征及预测方法[J]. 岩性油气藏, 2023, 35(6): 127-137.
[5] 唐昱哲, 柴辉, 王红军, 张良杰, 陈鹏羽, 张文起, 蒋凌志, 潘兴明. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023, 35(6): 147-158.
[6] 魏嘉怡, 王红伟, 刘刚, 李涵, 曹茜. 鄂尔多斯盆地西缘冲断带石炭系羊虎沟组沉积特征[J]. 岩性油气藏, 2023, 35(5): 120-130.
[7] 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
[8] 武小宁, 邓勇, 林煜, 钟厚财, 康晓宁, 汪钰婷, 屈琳. 准噶尔盆地阜东斜坡石炭系有利岩相预测及勘探方向[J]. 岩性油气藏, 2023, 35(4): 125-136.
[9] 江梦雅, 王江涛, 刘龙松, 李卉, 陈海龙, 蒋中发, 王学勇, 刘海磊. 准噶尔盆地盆1井西凹陷石炭系—二叠系天然气特征及成藏主控因素[J]. 岩性油气藏, 2023, 35(3): 138-151.
[10] 王建功, 李江涛, 李翔, 高妍芳, 张平, 孙秀建, 白亚东, 左洺滔. 柴西地区新生界湖相微生物碳酸盐岩岩相组合差异性及控制因素[J]. 岩性油气藏, 2023, 35(3): 1-17.
[11] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[12] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[13] 李国欣, 石亚军, 张永庶, 陈琰, 张国卿, 雷涛. 柴达木盆地油气勘探、地质认识新进展及重要启示[J]. 岩性油气藏, 2022, 34(6): 1-18.
[14] 刘永立, 李国蓉, 何钊, 田家奇, 李肖肖. 塔北地区寒武系层序地层格架与台缘带展布特征[J]. 岩性油气藏, 2022, 34(6): 80-91.
[15] 李珊珊, 姜鹏飞, 刘磊, 雷程, 曾云贤, 陈仕臻, 周刚. 四川盆地高磨地区寒武系沧浪铺组碳酸盐岩颗粒滩地震响应特征及展布规律[J]. 岩性油气藏, 2022, 34(4): 22-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!