岩性油气藏 ›› 2023, Vol. 35 ›› Issue (3): 138–151.doi: 10.12108/yxyqc.20230312

• 地质勘探 • 上一篇    下一篇

准噶尔盆地盆1井西凹陷石炭系—二叠系天然气特征及成藏主控因素

江梦雅, 王江涛, 刘龙松, 李卉, 陈海龙, 蒋中发, 王学勇, 刘海磊   

  1. 中国石油新疆油田公司 勘探开发研究院, 新疆 克拉玛依 834000
  • 收稿日期:2022-08-03 修回日期:2022-09-13 发布日期:2023-04-25
  • 作者简介:江梦雅(1995—),女,硕士,助理工程师,主要从事石油地质方面的研究工作。地址:(834000)新疆克拉玛依准噶尔路32号。Email:jiang-my@petrochina.com.cn。
  • 基金资助:
    中国石油天然气集团公司 “十四五” 前瞻基础性重大科技项目 “陆相深层超深层油气富集规律与勘探评价技术研究”(编号: 2021-DJ0206) 资助。

Characteristics and main controlling factors of natural gas of CarboniferousPermian in western well Pen-1 sag,Junggar Basin

JIANG Mengya, WANG Jiangtao, LIU Longsong, LI Hui, CHEN Hailong, JIANG Zhongfa, WANG Xueyong, LIU Hailei   

  1. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2022-08-03 Revised:2022-09-13 Published:2023-04-25

摘要: 综合利用地震、钻井、测井、岩心、薄片、有机地球化学等资料,对准噶尔盆地盆1井西凹陷石炭系-二叠系天然气的地球化学特征、成因、来源、成藏主控因素以及勘探潜力进行了探讨。研究结果表明:①盆1井西凹陷深层石炭系-二叠系天然气中甲烷的体积分数为70.93%~96.55%,平均值为81.78%,总体为湿气。碳同位素分布相对较广,甲烷碳同位素值为-41.62‰~-30.42‰,平均值为-34.75‰,天然气大多处于成熟-高成熟演化阶段;乙烷碳同位素值为-31.69‰~-24.16‰,平均值为-27.50‰,可见天然气成因以煤型气为主,其次为混合成因气。C7轻烃化合物中甲基环己烷和正庚烷的相对含量均较高,甲基环己烷相对质量分数为32.14%~58.37%,平均值为38.84%,正庚烷相对质量分数为25.37%~56.56%,平均值为47.79%。②研究区天然气成因类型及来源复杂,主要来自于二叠系下乌尔禾组烃源岩的煤型气及其与风城组油型气的混合气,来自风城组烃源岩的油型气较少。③研究区二叠系风城组和下乌尔禾组烃源岩生气潜力大,多种岩性储层发育,断裂和不整合面渗透性砂体为深层天然气的运移成藏提供了输导体系,且石炭系的古凸起和二叠系的岩性圈闭形成互补之势,对天然气在斜坡区的聚集起到了良好的侧向遮挡作用。④研究区鼻凸构造带石炭系火山岩和洼槽二叠系风城组碎屑岩2类规模较大的勘探领域是下一步盆1井西凹陷深层天然气勘探的潜力区。

关键词: 湿气, 火山岩, 碎屑岩, 下乌尔禾组煤型气, 风城组油型气, 石炭系—二叠系, 盆1井西凹陷, 准噶尔盆地

Abstract: Based on the seismic, drilling, logging, core, thin section and organic geochemical data, the geochemical characteristics,genesis,sources,main controlling factors of gas reservoir accumulation and exploration potential of natural gas of Carboniferous-Permian in western well Pen-1 sag of Junggar Basin were studied. The result shows that: (1)The volume fraction of methane in deep Carboniferous-Permian natural gas in western well Pen- 1 sag is 70.93%-96.55%,with an average of 81.78%,which is generally wet gas. The carbon isotope distribution is relatively wide. The carbon isotope value of methane ranges from -41.62‰ to -30.42‰,with an average value of -34.75‰,and most of them are in mature to high mature stage. The carbon isotope value of ethane ranges from -31.69‰ to -24.16‰,with an average value of -27.50‰,which means that coal type gas is the main origin of natural gas,followed by mixed origin gas. The relative contents of methylcyclohexane and n-heptane in C7 light hydrocarbon compounds are large,the relative mass fraction of methylcyclohexane is 32.14%-58.37%, with an average of 38.84%,and the relative mass fraction of n-heptane is 25.37%-56.56%,with an average of 47.79%.(2)The natural gas in the study area has complex origin and sources,the coal-type gas from the source rocks of lower Urho Formation and its mixture with oil-type gas of Fengcheng Formation are absolutely dominant,while the oil-type gas from the source rocks of Fengcheng Formation is less.(3)The source rocks of Permian Fengcheng Formation and lower Urho Formation in the study area have great gas generation potential,and multiple lithologic reservoirs are developed. Faults and unconformity permeable sand bodies constitute a transport system for deep gas migration and accumulation. Carboniferous paleo convex and Permian lithologic trap are complementary,which plays a good role of lateral shielding for the accumulation of natural gas in the slope area.(4)Carboniferous volcanic rocks in nose-bulge and clastic rocks of Permian Fengcheng Formation in sags in the study area are potential favorable areas for deep natural gas exploration in western well Pen-1 sag.

Key words: wet gas, volcanic rock, clastic rock, coal-type gas of lower Urho Formation, oil-type gas of Fengcheng Formation, Carboniferous-Permian, western well Pen-1 sag, Junggar Basin

中图分类号: 

  • TE122
[1] 王小军,宋永,郑孟林,等.准噶尔盆地复合含油气系统与复式聚集成藏[J].中国石油勘探, 2021, 26(4):29-43. WANG Xiaojun, SONG Yong, ZHENG Menglin, et al. Composite petroleum system and multi-stage hydrocarbon accumulation in Junggar Basin[J]. China Petroleum Exploration, 2021, 26(4):29-43.
[2] 胡素云,王小军,曹正林,等.准噶尔盆地大中型气田(藏)形成条件与勘探方向[J].石油勘探与开发, 2020, 47(2):247-259. HU Suyun, WANG Xiaojun, CAO Zhenglin, et al. Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(2):247-259.
[3] 雷海艳,王剑,陈锐兵,等.准噶尔盆地盆1井西凹陷东斜坡下侏罗统三工河组二段油气成藏有利地质因素[J].吉林大学学报(地球科学版), 2022, 52(4):1052-1064. LEI Haiyan, WANG Jian, CHEN Ruibing, et al. Favorable geological factors for hydrocarbon accumulation in the second member of Sanggonghe Formation of Lower Jurassic in the east slope of Well Pen-1 Sag in Junggar Basin[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(4):1052-1064.
[4] 李建忠,王小军,杨帆,等.准噶尔盆地中央坳陷西部下组合油气成藏模式及勘探前景[J].石油与天然气地质, 2022, 43(5):1059-1072. LI Jianzhong, WANG Xiaojun, YANG Fan, et al. Hydrocarbon accumulation pattern and exploration prospect of the structural traps in lower play of the western Central Depression in the Junggar Basin[J]. Oil&Gas Geology, 2022, 43(5):1059-1072.
[5] 张仲培,张宇,张明利,等.准噶尔盆地中部凹陷区二叠系-三叠系油气成藏主控因素与勘探方向[J].石油实验地质, 2022, 44(4):559-568. ZHANG Zhongpei, ZHANG Yu, ZHANG Mingli, et al. Main controlling factors and exploration direction of Permian to Triassic reservoir in the central sag of Jungaar Basin[J]. Petroleum Geology&Experiment, 2022, 44(4):559-568.
[6] 陈发景,汪新文,汪新伟.准噶尔盆地的原型和构造演化[J].地学前缘, 2005, 12(3):77-89. CHEN Fajing, WANG Xinwen, WANG Xinwei. Prototype and tectonic evolution of the Junggar Basin,northwestern China[J]. Earth Science Frontiers, 2005, 12(3):77-89.
[7] 何登发,张磊,吴松涛,等.准噶尔盆地构造演化阶段及其特征[J].石油与天然气地质, 2018, 39(5):845-861. HE Dengfa, ZHANG Lei, WU Songtao, et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil&Gas Geology, 2018, 39(5):845-861.
[8] 纪友亮,周勇,况军,等.准噶尔盆地车-莫古隆起形成演化及对沉积相的控制作用[J].中国科学:地球科学, 2010, 40(10):1342-1355. JI Youliang, ZHOU Yong, KUANG Jun, et al. The formation and evolution of Chepaizi-Mosuowan paleo-uplift and its control on the distributions of sedimentary facies in the Junggar Basin[J]. Science China:Earth Sciences, 2010, 40(10):1342-1355.
[9] 孙靖,郭旭光,尤新才,等.准噶尔盆地深层-超深层致密碎屑岩储层特征及有效储层成因[J].地质学报, 2022, 96(7):2532-2546. SUN Jing, GUO Xuguang, YOU Xincai, et al. Characteristics and effective reservoir genesis of deep-ultra deep tight clastic reservoir of Juggar Basin, NW China[J]. Acta Geologica Sinica, 2022, 96(7):2532-2546.
[10] BEHAR F, KRESSMANN S, RUDKIEWICZ J L, et al. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J]. Organic Geochemistry, 1992, 19(1/2/3):173-189.
[11] 戴金星.各类烷烃气的鉴别[J].中国科学(B辑), 1992, 22(2):185-193. DAI Jinxing. Identification of different hydrocarbon gas[J]. Science China (Series B), 1992, 22(2):185-193.
[12] 戴金星.天然气中烷烃气碳同位素研究的意义[J].天然气工业, 2011, 31(2):1-6. DAI Jinxing. Significance of the study on carbon isotopes of alkane gases[J]. Natural Gas Industry, 2011, 31(2):1-6.
[13] 郭瑞超,李延钧,王廷栋,等.轻烃参数在全烃地球化学分析油气成藏中的应用[J].特种油气藏, 2009, 16(5):5-9. GUO Ruichao, LI Yanjun, WANG Tingdong, et al. Application of light hydrocarbon parameters in geochemical analysis of hydrocarbon accumulation[J]. Special Oil and Gas Reservoirs, 2009, 16(5):5-9.
[14] THOMPSON K F M. Light hydrocarbons in subsurface sediments[J]. Geochim Cosmochim Acta, 1979, 43:657-672.
[15] THOMPSON K F M. Classification and thermal history of petroleum based on light hydrocarbon[J]. Geochim Cosmochim Acta, 1983, 47:303-316.
[16] 韩文学,麻伟娇,候连,等.天然气轻烃指标的地质意义:以鄂尔多斯盆地神木气田与塔西南坳陷山前带天然气藏为例[J].石油与天然气地质, 2017, 38(5):869-877. HAN Wenxue, MA Weijiao, HOU Lian, et al. Geological significance of light hydrocarbon index of natural gas:Taking Shenmu gas field and piedmont zone of the southwest Tarim Basin as examples[J]. Oil&Gas Geology, 2017, 38(5):869-877.
[17] 夏新宇,李春园,赵林.天然气混源作用对同位素判源的影响[J].石油勘探与开发, 1998, 25(3):89-90. XIA Xinyu, LI Chunyuan, ZHAO Lin. Influence of mixture on iso-tope indices in gas source discrimination[J]. Petroleum Exploration and Development, 1998, 25(3):89-90.
[18] DAI Jinxing, QI Houfa, SONG Yan, et al. Composition, carbon isotope characteristics and the origin of coal-bed gases in China and their implications[J]. Science China Chemistry, 1987, 30(12):1324-1337.
[19] 王绪龙,支东明,王屿涛,等.准噶尔盆地烃源岩与油气地球化学[M].北京:石油工业出版社, 2013. WANG Xulong, ZHI Dongming, WANG Yutao, et al. Geochemistry of source rock and petroleum in the Junggar Basin[M]. Beijing:Petroleum Industry Press, 2013.
[20] 黄芸,梁舒艺,杨迪生,等.原生韵律型火山岩储层特征及主控因素[J].特种油气藏, 2021, 28(6), 54-61. HUANG Yun, LIANG Shuyi, YANG Disheng, et al. Characteristics and main controlling factors of primary rhyolite volcanic reservoir[J]. Special Oil and Gas Reservoirs, 2021, 28(6):54-61.
[21] 潘荣,朱筱敏,王星星,等.深层有效碎屑岩储层形成机理研究进展[J].岩性油气藏, 2014, 26(4):73-80. PAN Rong, ZHU Xiaomin, WANG Xingxing, et al. Advancement on formation mechanism of deep effective clastic reservoir[J]. Lithologic Reservoirs, 2014, 26(4):73-80.
[22] 袁云峰,曹剑,胡文瑄,等.准噶尔盆地腹部断裂和不整合面流体活动特征对比[J].地质科技情报, 2015, 34(4):78-83. YUAN Yunfeng, CAO Jian, HU Wenxuan, et al. Comparison of fluid activities between fault and unconformity zones in the central Junggar Basin[J]. Geological Science and Technology Information, 2015, 34(4):78-83.
[23] 付广,陈雪晴,邓玮,等.油源断裂输导油气时间有效性研究方法及其应用[J].岩性油气藏, 2016, 28(6):9-15. FU Guang, CHEN Xueqing, DENG Wei, et al. Research method of time effectiveness of hydrocarbon transporting by oil-source fault and its application[J]. Lithologic Reservoirs, 2016, 28(6):9-15.
[24] 陈建平.准噶尔盆地盆1井西凹陷乌尔禾组含油气系统油气输导体系研究[J].西藏大学学报(自然科学版), 2011, 26(2):122-126. CHEN Jianping. Study on the conducting system of Wuerhe Formation petroliferous system of well Pen-1 western depression in Junggar Basin[J]. Journal of Tibet University (Science&Technology Edition), 2011, 26(2):122-126.
[25] 陈棡,卞保力,李啸,等.准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J].岩性油气藏, 2021, 33(1):46-56. CHEN Gang, BIAN Baoli, LI Xiao, et al. Transport system and its control on reservoir formation of Jurassic-Cretaceous reservoirs in hinterland of Junggar Basin[J]. Lithologic Reservoirs, 2021, 33(1):46-56.
[26] 唐勇,孔玉华,盛建红,等.准噶尔盆地腹部缓坡型岩性地层油气藏成藏控制因素分析[J].沉积学报, 2009, 27(3):567-571. TANG Yong, KONG Yuhua, SHENG Jianhong, et al. Controlling factors of reservoir formation in ramp type lithostratigraphic reservoir in hinterland of Junggar Basin[J]. Acta Sedmentologica Sinica, 2009, 27(3):567-571.
[27] 匡立春,支东明,王小军,等.新疆地区含油气盆地深层-超深层成藏组合与勘探方向[J].中国石油勘探, 2021, 26(4):1-16. KUANG Lichun, ZHI Dongming, WANG Xiaojun, et al. Oil and gas accumulation assemblages in deep to ultra-deep formations and exploration targets of petroliferous basins in Xinjiang region[J]. China Petroleum Exploration, 2021, 26(4):1-16.
[1] 柳忠泉, 赵乐强, 曾治平, 田继军, 李正强, 罗锦昌, 胡美玲. 准噶尔盆地阜康断裂带二叠系芦草沟组页岩油成藏条件[J]. 岩性油气藏, 2023, 35(3): 126-137.
[2] 徐壮, 石万忠, 王任, 骆福嵩, 夏永涛, 覃硕, 张晓. 塔北隆起西部地区白垩系碎屑岩油气成藏规律及成藏模式[J]. 岩性油气藏, 2023, 35(2): 31-46.
[3] 曾治平, 柳忠泉, 赵乐强, 李艳丽, 王超, 高平. 准噶尔盆地西北缘哈山地区二叠系风城组页岩油储层特征及其控制因素[J]. 岩性油气藏, 2023, 35(1): 25-35.
[4] 丁超, 王攀, 秦亚东, 梁向进, 郑爱萍, 李宁, 邢向荣. 基于非稳态热传导的SAGD开发指标预测模型[J]. 岩性油气藏, 2023, 35(1): 160-168.
[5] 卢迎波. 超稠油注气次生泡沫油生成机理及渗流特征[J]. 岩性油气藏, 2022, 34(6): 152-159.
[6] 吕正祥, 廖哲渊, 李岳峰, 宋修章, 李响, 何文军, 黄立良, 卿元华. 玛湖凹陷二叠系风城组碱湖云质岩储层成岩作用[J]. 岩性油气藏, 2022, 34(5): 26-37.
[7] 白雨, 汪飞, 牛志杰, 金开来, 李沛毅, 许多年, 陈刚强. 准噶尔盆地玛湖凹陷二叠系风城组烃源岩生烃动力学特征[J]. 岩性油气藏, 2022, 34(4): 116-127.
[8] 李承泽, 陈国俊, 田兵, 袁晓宇, 孙瑞, 苏龙. 珠江口盆地深层高温高压下的水岩作用[J]. 岩性油气藏, 2022, 34(4): 141-149.
[9] 雷海艳, 郭佩, 孟颖, 齐婧, 刘金, 张娟, 刘淼, 郑雨. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价[J]. 岩性油气藏, 2022, 34(3): 142-153.
[10] 汪林波, 韩登林, 王晨晨, 袁瑞, 林伟, 张娟. 库车坳陷克深井区白垩系巴什基奇克组孔缝充填特征及流体来源[J]. 岩性油气藏, 2022, 34(3): 49-59.
[11] 常少英, 刘玲利, 崔钰瑶, 王锋, 宋明星, 穆晓亮. 浅水三角洲薄砂层地震沉积表征技术——以准噶尔盆地芳草湖地区清水河组为例[J]. 岩性油气藏, 2022, 34(1): 139-147.
[12] 李娟, 郑茜, 孙松领, 张斌, 陈广坡, 何巍巍, 韩乾凤. 应用测井储层因子预测变质碎屑岩裂缝-孔隙型储层——以海拉尔盆地贝尔凹陷基岩为例[J]. 岩性油气藏, 2021, 33(6): 165-176.
[13] 王剑, 周路, 靳军, 向宝力, 胡文瑄, 杨洋, 康逊. 准噶尔盆地玛南地区乌尔禾组砂砾岩优质储层特征[J]. 岩性油气藏, 2021, 33(5): 34-44.
[14] 石文武, 雍运动, 吴开龙, 田彦灿, 王鹏. 渤海湾盆地老爷庙地区火山岩速度建模与成像[J]. 岩性油气藏, 2021, 33(4): 101-110.
[15] 马乔雨, 张欣, 张春雷, 周恒, 武中原. 基于一维卷积神经网络的横波速度预测[J]. 岩性油气藏, 2021, 33(4): 111-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!