岩性油气藏 ›› 2020, Vol. 32 ›› Issue (3): 14–23.doi: 10.12108/yxyqc.20200302

• 油气地质 • 上一篇    下一篇

低阶煤储层微观孔隙结构多尺度联合表征

杨甫1,2,3, 贺丹2,3, 马东民1,2, 段中会2,3, 田涛2,3, 付德亮2,3   

  1. 1. 西安科技大学 地质与环境学院, 西安 710054;
    2. 自然资源部煤炭资源勘查与综合利用重点实验室, 西安 710021;
    3. 陕西省煤田地质集团有限公司, 西安 710021
  • 收稿日期:2019-05-20 修回日期:2019-09-04 出版日期:2020-05-21 发布日期:2020-04-30
  • 作者简介:杨甫(1986-),男,博士,高级工程师,主要从事盆地构造与非常规天然气地质方面的研究。地址:(710021)陕西省西安市经济开发区文景路26号。Email:yangpu666@163.com。
  • 基金资助:
    中国博士后基金面上项目“不同煤阶煤岩组分对煤层气解吸过程的吸附热差异”(编号:2018M633642XB)、自然资源部重点实验室项目和陕西省博士后基金“鄂尔多斯盆地南缘三叠系页岩储层孔隙特征及页岩气富集规律”(编号:ZP2018-2,2018BSHQYXMZZ08)和陕西省煤田地质集团有限公司重大科研课题“陕西省富油煤生油潜力评价及高效开发利用技术”(编号:SMDZ-2019ZD-1)联合资助

Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir

YANG Fu1,2,3, HE Dan2,3, MA Dongmin1,2, DUAN Zhonghui2,3, TIAN Tao2,3, FU Deliang2,3   

  1. 1. College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China;
    2. Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an 710021, China;
    3. Shaanxi Coal Geology Group Co., Ltd., Xi'an 710021, China
  • Received:2019-05-20 Revised:2019-09-04 Online:2020-05-21 Published:2020-04-30

摘要: 多尺度微观孔隙结构对低阶煤储层煤层气吸附/解吸过程的研究具有重要意义。以黄陇侏罗系煤田和陕北侏罗系煤田低阶煤为研究对象,采用压汞、液氮吸附和CO2吸附等测试手段表征低阶煤储层的孔径分布、孔隙类型等参数,联合核磁共振测试定量分析低阶煤阶段孔径和多尺度孔径分布特征。结果表明,低阶煤孔隙以微孔为主,大孔次之。微孔、大孔、介孔对比表面积的贡献率依次减小。低阶煤储层孔隙类型以两端开口的“柱状孔”和“墨水瓶孔”为主,孔隙连通性较好。核磁共振法获取样品的T2c截止值为1.4~155.2 ms,变化较大,束缚流体饱和度(BVI)为79.21%~96.96%,可动流体饱和度低。低阶煤储层的孔隙结构复杂多样,单一测试技术与联合计算表征方法在表征低阶煤储层的孔隙结构时差异较大。

关键词: 孔隙类型, 孔径分布, 核磁共振, 低阶煤储层, 侏罗系, 黄陇煤田, 陕北煤田

Abstract: The multi-scale micro-pore structure is of great significance to the study of the adsorption/desorption process of coalbed methane in low rank coal reservoirs. Taking Jurassic Huanglong coalfield and Shaanbei coalfield as examples,the pore size distribution andpore types of low-rank coal reservoirs were measured by mercury injection, liquid nitrogen adsorption and CO2 adsorption. Combined with nuclear magnetic resonance,the pore size and multi-scale pore size distribution characteristics of low-rank coal were quantitatively analyzed. The results show that the pores of low-rank coal are mainly micropores,followed by macropores. The contribution rate of micropores,macropores and mesoporous pores to specific surface area decreased in turn.The pore types of low-rank coal reservoirs are mainly "columnar pore" and "ink bottle hole",which have good pore connectivity. The T2c cut-off value of the samples obtained by NMR method is 1.4-155.2 ms,which varies greatly. The bound fluid saturation(BVI) is 79.21%-96.96%,and the movable fluid saturation is low. The pore structure of low-rank coal reservoirs is complex and diverse,and there are great differences between single test technique and combined computing characterization method in the characterization of pore structures of low-rank coal reservoirs.

Key words: pore type, pore size distribution, nuclear magnetic resonance, low rank coal reservoir, Jurassic, Huanglong coalfield, Shaanbei coalfield

中图分类号: 

  • TE122.2
[1] 姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究.煤炭学报,2006,31(2):163-168. YAO Y B,LIU D M,HUANG W H,et al. Research on the porefractures system properties of coalbed methane reservoirs and recovery in Huainan and Huaibei coal-fields. Journal of China coal society,2006,31(2):163-168.
[2] 李子文,林柏泉,郝志勇,等.煤体孔径分布特征及其对瓦斯吸附的影响.中国矿业大学学报,2013,42(6):1047-1053. LI Z W,LIN B Q,HAO Z Y,et al. Characteristics of pore size distribution of coal and its impacts on gas adsorption. Journal of China University of Mining&Technology,2013,42(6):1047-1053.
[3] 张宪国,张涛,林承焰.基于孔隙分形特征的低渗透储层孔隙结构评价.岩性油气藏,2013,25(6):40-45. ZHANG X G,ZHANG T,LIN C Y. Pore structure evaluation of low permeability reservoir based on pore fractal features. Lithologic Reservoirs,2013,25(6):40-45.
[4] 李传亮,朱苏阳,彭朝阳,等.煤层气井突然产气机理分析.岩性油气藏,2017,29(2):145-149. LI C L,ZHU S Y,PENG C Y,et al. Mechanism of gas production rate outburst in coalbed methane wells. Lithologic Reservoirs,2017,29(2):145-149.
[5] 尹帅,谢润成,丁文龙,等.常规及非常规储层岩石分形特征对渗透率的影响.岩性油气藏,2017,29(4):81-90. YIN S,XIE R C,DING W L,et al. Influences of fractal characteristics of reservoir rocks on permeability. Lithologic Reservoirs, 2017,29(4):81-90.
[6] 中国国家标准化管理委员会. GB/T 21650.1-2008压汞法和气体吸附法测定固体材料孔径分布和孔隙度第1部分:压汞法.北京:中国标准出版社,2008. Standardization Management Committee of the People's Republic of China. GB/T 21650.1-2008 Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption Part 1:Mercury porosimetry. Beijing:Standards Press of China, 2008.
[7] 田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征.石油学报,2012,33(3):419-427. TIAN H,ZHANG S C,LIU S B,et al. Determination of organicrich shale pore features by mercury injection and gas adsorption methods. Acta Petrolei Sinica,2012,33(3):419-427.
[8] 中国国家标准化管理委员会. GB/T 21650.2-2008压汞法和气体吸附法测定固体材料孔径分布和孔隙度第2部分:气体吸附法分析介孔和大孔.北京:中国标准出版社,2008. Standardization Management Committee of the People's Republic of China. GB/T 21650.2-2008 Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption Part 2:Analysis of mesopores and macropores by gas adsorption. Beijing:Standards Press of China,2008.
[9] BUSTIN R M,BUSTIN A M M,CUI A,et al. Impact of shale properties on pore structure and storage characteristics. SPE 119892,2008.
[10] 姚艳斌,刘大锰,蔡益栋,等.基于NMR和X-CT的煤的孔裂隙精细定量表征.中国科学D辑:地球科学,2010,53(6):67-75. YAO Y B,LIU D M,CAI Y D,et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography. Science in China Series D:Earth Sciences,2010,53(6):67-75.
[11] 周龙刚,吴财芳.黔西比德-三塘盆地主采煤层孔隙特征.煤炭学报,2012,37(11):1878-1884. ZHOU L G,WU C F. Pore characteristics of the main coal seams in Bide-Santang Basin in western Guizhou Province. Journal of China Coal Society,2012,37(11):1878-1884.
[12] 蔺亚兵,贾雪梅,马东民.基于液氮吸附法对煤的孔隙特征研究与应.煤炭科学技术,2016,44(3):135-140. LIN Y B,JIA X M,MA D M. Study and application of coal pore features based on liquid nitrogen adsorption method. Coal Science and Technology,2016,44(3):135-140.
[13] YAO Y B,LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel,2012,95:152-158.
[14] 谢松彬,姚艳斌,陈基瑜,等.煤储层微小孔孔隙结构的低场核磁共振研究.煤炭学报,2015,40(增刊1):170-176. XIE S B,YAO Y B,CHEN J Y,et al. Research of micropore structure in coal reservoir using low-field NMR. Journal of China Coal Society,2015,40(Suppl 1):170-176.
[15] 徐晓萌,马红星,田建伟,等.基于核磁共振技术的煤体微观孔隙结构研究.煤矿安全,2017,48(2):1-4. XU X M,MA H X,TIAN J W,et al. Study on microscopic pore structures of coal based on nuclear magnetic resonance technology. Safety in Coal Mines,2017,48(2):1-4.
[16] 王凯,乔鹏,王壮森,等.基于二氧化碳和液氮吸附,高压压汞和低场核磁共振的煤岩多尺度孔径表征.中国矿业,2017,26(4):146-152. WANG K,QIAO P,WANG Z S,et al. Multiple scale pore size characterization of coal based on carbon dioxide and liquid nitrogen adsorption,high-pressure mercury intrusion and low field nuclear magnetic resonance. China Mining Magazine,2017,26(4):146-152.
[17] 李阳,张玉贵,张浪,等.基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征.煤炭学报,2019,44(4):1188-1196. LI Y,ZHANG Y G,ZHANG L,et al. Characterization on pore structure of tectonic coals based on the method of mercury intrusion,carbon dioxide adsorption and nitrogen adsorption. Journal of China Coal Society,2019,44(4):1188-1196.
[18] 中国国家标准化管理委员会.GB/T 212-2008煤的工业分析方法.北京:中国标准出版社,2008. Standardization Management Committee of the People's Republic of China. GB/T 212-2008 Proximate analysis of coal. Beijing:Standards Press of China,2008.
[19] 中国国家标准化管理委员会. GB/T 8899-2013煤的显微组分组和矿物测定方法.北京:中国标准出版社,2013. Standardization Management Committee of the People's Republic of China. GB/T 8899-2013 Determination of maceral group composition and minerals in coal. Beijing:Standards Press of China,2013.
[20] 中国国家标准化管理委员会. GB/T 6948-2008煤的镜质体反射率显微镜测定方法.北京:中国标准出版社,2008. Standardization Management Committee of the People's Republic of China. GB/T 6948-2008 Standardization Administration of the People's Republic of China. Method of determining microscopically the reflectance of vitrinite in coal. Beijing:Standards Press of China,2008.
[21] 焦堃,姚素平,吴浩,等.页岩气储层孔隙系统表征方法研究进展.高校地质学报,2014,20(1):151-161. JIAO K,YAO S P,WU H,et al. Advances in characterization of pore system of gas shales. Geological Journal of China Universities,2014,20(1):151-161.
[22] 国家能源局. SY/T 6490-2014岩样核磁共振参数实验室测量规范.北京:石油工业出版社,2014. National Energy Administration. SY/T 6490-2014 Specification for measurement of rock NMR parameter in laboratory. Beijing:Petroleum Industry Press,2014.
[23] WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America, 1921,7(4):115-116.
[24] RITTER H L,DRAKE L C. Pore-size distribution in porous materials. I. Pressure porosimeter and determination of complete macro pore size distributions. Industrial and Engineering Chemistry,Analytical Edition,1945,17(12):782-786.
[25] ROOTARE H M,PRENZLOW C F. Surface areas from mercury porosimeter measurements. The Journal of Physical Chemistry, 1967,71(8):2733-2736.
[26] MATTHIAS T,KATSUMI K,ALEXANDER V N,et al. Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry,2015,87(9/10):1051-1069.
[27] 陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究.煤炭学报,2001,26(5):552-556. CHEN P,TANG X Y. The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal. Journal of China Coal Society,2001,26(5):552-556.
[28] 赵俊龙,汤达祯,许浩,等.基于二氧化碳吸附实验的页岩微孔结构精细表征.大庆石油地质与开发,2015,34(5):156-161. ZHAO J L,TANG D Z,XU H,et al. Fine characterization of the shale micro-pore structures based on the carbon dioxide adsorption experiment. Petroleum Geology and Oilfield Development in Daqing,2015,34(5):156-161.
[29] 郑贵强,凌标灿,郑德庆,等.核磁共振实验技术在煤孔径分析中的应用.华北科技学院学报,2014,11(4):1-7. ZHENG G Q,LING B C,ZHENG D Q,et al. The application of nuclear magnetic resonance on analyzing aperture in coal. Journal of North China Institute of Science and Technology, 2014,11(4):1-7.
[30] 申辉林,朱伟峰,刘美杰.核磁共振录井T2谱截止值确定方法及其适应性研究.录井工程,2010,21(2):39-42. SHEN H L,ZHU W F,LIU M J. The method of determining T2 cutoff value in NMR logging and study on its applicability. Mudlogging Engineering,2010,21(2):39-42.
[31] QIN L,ZHAI C,LIU S,et al. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw-a nuclear magnetic resonance investigation. Fuel,2017,194:102-114.
[32] 朱卫华,印友法,蒋林华,等.硅粉水泥石中微孔孔径分布及其对强度的影响.建筑材料学报,2004,7(1):14-18. ZHU W H,YIN Y F,JIANG L H,et al. Study of micro pore size distribution and its effect on the strength of silica fume cement paste. Journal of Building Materials,2004,7(1):14-18.
[33] 何雨丹,毛志强,肖立志,等.核磁共振T2分布评价岩石孔径分布的改进方法.地球物理学报,2005,48(2):373-378. HE Y D,MAO Z Q,XIAO L Z,et al. An improved method of using NMR T2 distribution to evaluate pore size distribution. Chinese Journal of Geophysics,2005,48(2):373-378.
[34] YUAN Y,REZAEE R. Comparative porosity and pore structure assessment in shales:Measurement techniques,influencing factors and implications for reservoir characterization. Energies, 2019,12(11):2094-2108.
[35] 胡彪,程远平,王亮.原生结构煤与构造煤孔隙结构与瓦斯扩散特性研究.煤炭科学技术,2018,46(3):103-107. HU B,CHENG Y P,WANG L. Study on porous structure and gas diffusion characteristics of primary structure coal and tectonic coal. Coal Science and Technology,2018,46(3):103-107.
[36] FU H,WANG X,ZHANG L,et al. Investigation of the factors that control the development of pore structure in lacustrine shale:a case study of block X in the Ordos Basin,China. Journal of Natural Gas Science and Engineering,2015,26:1422-1432.
[1] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
[2] 毛锐, 牟立伟, 王刚, 樊海涛. 基于核磁共振自由弛豫特征的含油性评价方法——以玛湖凹陷下乌尔禾组砾岩储层为例[J]. 岩性油气藏, 2021, 33(5): 140-147.
[3] 张文凯, 施泽进, 田亚铭, 王勇, 胡修权, 李文杰. 川东南志留系小河坝组致密砂岩孔隙类型及成因[J]. 岩性油气藏, 2021, 33(4): 10-19.
[4] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[5] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[6] 郭秋麟, 吴晓智, 卫延召, 柳庄小雪, 刘继丰, 陈宁生. 准噶尔盆地腹部侏罗系油气运移路径模拟[J]. 岩性油气藏, 2021, 33(1): 37-45.
[7] 陈棡, 卞保力, 李啸, 刘刚, 龚德瑜, 曾德龙. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏, 2021, 33(1): 46-56.
[8] 田光荣, 王建功, 孙秀建, 李红哲, 杨魏, 白亚东, 裴明利, 周飞, 司丹. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素[J]. 岩性油气藏, 2021, 33(1): 131-144.
[9] 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274.
[10] 袁纯, 张惠良, 王波. 大型辫状河三角洲砂体构型与储层特征——以库车坳陷北部阿合组为例[J]. 岩性油气藏, 2020, 32(6): 73-84.
[11] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[12] 孙会珠, 朱玉双, 魏勇, 高媛. CO2驱酸化溶蚀作用对原油采收率的影响机理[J]. 岩性油气藏, 2020, 32(4): 136-142.
[13] 程辉, 王付勇, 宰芸, 周树勋. 基于高压压汞和核磁共振的致密砂岩渗透率预测[J]. 岩性油气藏, 2020, 32(3): 122-132.
[14] 吴家洋, 吕正祥, 卿元华, 杨家静, 金涛. 致密油储层中自生绿泥石成因及其对物性的影响——以川中东北部沙溪庙组为例[J]. 岩性油气藏, 2020, 32(1): 76-85.
[15] 唐梅荣, 张同伍, 白晓虎, 王泫懿, 李川. 孔喉结构对CO2驱储层伤害程度的影响[J]. 岩性油气藏, 2019, 31(3): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .