岩性油气藏 ›› 2020, Vol. 32 ›› Issue (4): 136142.doi: 10.12108/yxyqc.20200414
孙会珠1,2,3, 朱玉双1,2, 魏勇4, 高媛3,5
SUN Huizhu1,2,3, ZHU Yushuang1,2, WEI Yong4, GAO Yuan3,5
摘要: CO2驱酸化溶蚀作用对储层会产生一定程度的伤害。为揭示这种伤害作用对原油采收率的影响机理,选取6块同级别渗透率的岩心样品,在地层温度、压力条件下进行物理模拟实验,通过核磁共振技术评价酸化溶蚀作用对原油采收率的影响机理。实验结果显示,驱替产出流体的pH值低于原始地层水,且通过离子浓度变化发现驱替过程中有长石和碳酸盐矿物发生溶蚀;岩心的渗透率在驱替结束后出现一定程度降低,且反应时间越长,渗透率的降幅越大;岩心样品的最终采收率与反应时间呈反比,反应时间为240 h的岩心样品相比反应时间为0 h的岩心样品,其最终采收率降幅达到27.31%。综合分析认为,CO2驱长时间的酸化溶蚀反应产物及脱落的黏土颗粒会堵塞孔喉,导致储层渗流能力下降,进而影响CO2驱的驱油效率及最终采收率。
中图分类号:
[1] 秦积舜, 韩海水, 刘晓蕾.美国CO2驱油技术应用及启示.石油勘探与开发, 2015, 42(2):209-216. QIN J S, HAN H S, LIU X L. Application and enlightenment of carbon dioxide flooding in the United States of America. Petroleum Exploration and Development, 2015, 42(2):209-216. [2] 王玉普, 刘义坤, 邓庆军.中国陆相砂岩油田特高含水期开发现状及对策.东北石油大学学报, 2014, 38(1):1-9. WANG Y P, LIU Y K, DENG Q J. Current situation and development strategy of the extra high water cut stage of continental facies sandstone oil fields in China. Journal of Northeast Petroleum University, 2014, 38(1):1-9. [3] 张德平.CO2驱采油技术研究与应用现状.科技导报, 2011, 29(13):75-79. ZHANG D P. CO2 flooding enhanced oil recovery technique and its application status. Science & Technology Review, 2011, 29(13):75-79. [4] 杨红, 王宏, 南宇峰, 等.油藏CO2驱油提高采收率适宜性评. 岩性油气藏, 2017, 29(3):140-146. YANG H, WANG H, NAN Y F, et al. Suitability evaluation of enhanced oil recovery by CO2 flooding. Lithologic Reservoirs, 2017, 29(3):140-146. [5] 王琛, 李天太, 高辉, 等.CO2驱沥青质沉积量对致密砂岩油藏采收率的影响机理.油气地质与采收率, 2018, 25(3):107-111. WANG C, LI T T, GAO H, et al. Study on influencing mechanism of asphaltene precipitation on oil recovery during CO2 flooding in tight sandstone reservoirs. Petroleum Geology and Recovery Efficiency, 2018, 25(3):107-111. [6] 祝春生, 程林松.低渗透油藏CO2驱提高原油采收率评价研究.钻采工艺, 2007, 30(6):55-57. ZHU C S, CHENG L S. Evaluation of CO2 flooding in low permeability reservoirs to improve crude oil recovery. Drilling & Production Technology, 2007, 30(6):55-57. [7] 王琛, 李天太, 高辉, 等.CO2驱沥青质沉积对岩心的微观伤害机理.新疆石油地质, 2017, 38(5):602-606. WANG C, LI T T, GAO H, et.al. Microscopic damage mechanism of asphaltene deposition on cores during CO2 flooding. Xinjiang Petroleum Geology, 2017, 38(5):602-606. [8] 李士伦, 周守信, 杜建芬, 等.国内外注气提高石油采收率技术回顾与展望.油气地质与采收率, 2002, 9(2):1-5. LI S L, ZHOU S X, DU J F, et al. Petroleum geology and recovery efficiency. Petroleum Geology and Recovery Efficiency, 2002, 9(2):1-5. [9] 郭冀隆.二氧化碳地质封存过程中CO2-水-岩相互作用实验研究.北京:中国地质大学(北京),2017. GUO J L. Experimental studies on CO2-water-rockinteractions under geological CO2 storage conditions. Beijing:China University of Geosciences(Beijing), 2017. [10] 王晓宇.埋藏条件下CO2-地层水-砂岩相互作用实验及其地质应用.南京:南京大学, 2017. WANG X Y. A experimental study of CO2-formation water-sandstone interactions under burial conditions and its geological applications. Nanjing:Nanjing University, 2017. [11] 尚庆华, 王玉霞, 黄春霞, 等.致密砂岩油藏超临界与非超临界CO2驱油特征.岩性油气藏, 2018, 30(3):153-158. SHANG Q H, WANG Y X, HUANG C X, et al. Supercritical and non-supercritical CO2 flooding characteristics in tight sandstone reservoir. Lithologic Reservoirs, 2018, 30(3):153-158. [12] 马力, 欧阳传湘, 谭钲扬, 等.低渗透油藏CO2驱中后期提效方法研究.岩性油气藏, 2018, 30(2):139-145. MA L, OUYANG C X, TAN Z Y, et al. Efficiency improvement of CO2 flooding in middle and later stage for low permeability reservoirs. Lithologic Reservoirs, 2018, 30(2):139-145. [13] 周冰.CO2流体对泥岩盖层的改造作用——水岩相互作用实验研究//中国地质学会.中国地质学会2015学术年会论文摘要汇编(中册).西安:中国地质学会, 2015. ZHOU B. Reconstruction of mudstone caprock by CO2 fluid:Experimental study on water-rock interaction//Geological Society of China. Abstracts of the 2015 Annual Meeting of Geological Society of China. Xi'an:Geological Society of China, 2015. [14] 王琛, 李天太, 赵金省, 等.利用核磁共振技术研究沥青质沉积对低渗储层孔隙结构的影响. 地球物理学进展, 2018, 33(4):1700-1706. WANG C, LI T T, ZHAO J S, et al. Study on effect of asphaltene precipitation on the pore structure of low permeability reservoir by nuclear magnetic resonance(NMR). Progress in Geophysics, 2018, 33(4):1700-1706. [15] 李紫晶, 郭冀隆, 张阳阳, 等.砂岩高温超临界CO2水岩模拟实验及其地质意义.天然气工业, 2015, 35(5):31-38. LI Z J, GUO J L, ZHANG Y Y, et al. High-temperature supercritical CO2 water-rock simulation experiment of sandstone and its geological significance. Natural Gas Industry, 2015, 35(5):31-38. [16] ROSS G D, TODD A C, TWEEDIE J A, et al. The dissolution effects of CO2-brine systems on the permeability of UK and North Sea calcareous sandstones. SPE 10685, 1982. [17] RYOJI S, THOMAS L. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Applied Geochemistry, 2000, 15(3):265-279. [18] YU Z, LIU L, YANG S, et al. An experimental study of CO2-brine-rock interaction at in situ pressure-temperature reservoir conditions. Chemical Geology, 2012, 326:88-101. [19] 于志超.饱和CO2地层水驱过程中的水-岩相互作用研究.吉林:吉林大学, 2013. YU Z C. An experimental study on water-rock interaction during water flooding in formations saturated with CO2. Jilin:Jilin University, 2013. [20] 于志超, 杨思玉, 刘立, 等.饱和CO2地层水驱过程中的水-岩相互作用实验. 石油学报, 2012, 33(6):1032-1042. YU Z C, YANG S Y, LIU L, et al. An experimental study on water-rock interaction during water flooding in formations saturated with CO2. Acta Petrolei Sinica, 2012, 33(6):1032-1042. [21] 于淼, 刘立, 杨思玉, 等.CO2-盐水-砂岩相互作用实验研究.矿物学报, 2015, 35(增刊1):803. YU M, LIU L, YANG S Y, et al. Experimental study on CO2-Brine-Sandstone interaction. Acta Mineralogica Sinica, 2015, 35(Suppl 1):803. [22] 于淼.CO2驱油后的流体-岩石相互作用实验//中国矿物岩石地球化学学会.中国矿物岩石地球化学学会第15届学术年会论文摘要集(5).长春:中国矿物岩石地球化学学会, 2015. YU M. Fluid-rock interaction experiment after CO2 flooding//Chinese Society for Mineralogy,Petrology and Geochemistry. Abstract Collection of Papers of the 15th Annual Conference of Chinese Society for Mineralogy, Petrology and Geochemistry. Changchun:Chinese Society for Mineralogy, Petrology and Geochemistry, 2015. [23] 王琛, 李天太, 高辉, 等.CO2-地层水-岩石相互作用对特低渗透砂岩孔喉伤害程度定量评价.西安石油大学学报(自然科学版), 2017, 32(6):66-72. WANG C, LI T T, GAO H, et al. Quantitative study on the damage degree of CO2-formation water-rock interaction on pore and throat of ultra-low permeability sandstone. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(6):66-72. [24] 唐梅荣, 张同伍, 白晓虎, 等.孔喉结构对CO2驱储层伤害程度的影响.岩性油气藏, 2019, 31(3):113-119. TANG M R, ZHANG T W, BAI X H, et al. Influence of pore throat structure on reservoir damage with CO2 flooding. Lithologic Reservoirs, 2019, 31(3):113-119. |
[1] | 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. |
[2] | 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188. |
[3] | 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188. |
[4] | 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177. |
[5] | 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171. |
[6] | 郭永伟, 闫方平, 王晶, 褚会丽, 杨建雷, 陈颖超, 张笑洋. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161. |
[7] | 崔永正, 姜瑞忠, 郜益华, 乔欣, 王琼. 空间变导流能力压裂井CO2驱试井分析[J]. 岩性油气藏, 2020, 32(4): 172-180. |
[8] | 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165. |
[9] | 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133. |
[10] | 唐梅荣, 张同伍, 白晓虎, 王泫懿, 李川. 孔喉结构对CO2驱储层伤害程度的影响[J]. 岩性油气藏, 2019, 31(3): 113-119. |
[11] | 韩培慧, 闫坤, 曹瑞波, 高淑玲, 佟卉. 聚驱后油层提高采收率驱油方法[J]. 岩性油气藏, 2019, 31(2): 143-150. |
[12] | 景紫岩, 张佳, 李国斌, 竺彪, 韩国庆, 刘双双. 泡沫混排携砂解堵机理及影响因素[J]. 岩性油气藏, 2018, 30(5): 154-160. |
[13] | 尚庆华, 王玉霞, 黄春霞, 陈龙龙. 致密砂岩油藏超临界与非超临界CO2驱油特征[J]. 岩性油气藏, 2018, 30(3): 153-158. |
[14] | 马力, 欧阳传湘, 谭钲扬, 王长权, 宋岩, 林飞. 低渗透油藏CO2驱中后期提效方法研究[J]. 岩性油气藏, 2018, 30(2): 139-145. |
[15] | 杨红, 王宏, 南宇峰, 屈亚宁, 梁凯强, 江绍静. 油藏CO2驱油提高采收率适宜性评价[J]. 岩性油气藏, 2017, 29(3): 140-146. |
|