岩性油气藏 ›› 2019, Vol. 31 ›› Issue (5): 129–133.doi: 10.12108/yxyqc.20190515

• 油气田开发 • 上一篇    下一篇

离子组成及矿化度对低矿化度水驱采收率的影响

黄广庆   

  1. 中国石油长城钻探工程有限公司 国际测井公司, 北京 100101
  • 收稿日期:2018-12-05 修回日期:2019-04-29 出版日期:2019-09-21 发布日期:2019-09-16
  • 第一作者:黄广庆(1984-),男,博士,工程师,主要从事油气田开发研究和相关技术服务工作。地址:(100101)北京市朝阳区安立路名人大厦。Email:hgqing.gwdc@cnpc.com.cn。
  • 基金资助:
    中国石油天然气集团公司海外重大科技项目“海外天然气藏复杂储层精细评价与预测技术”(编号:2018D-4305)资助

Influence of ion composition and salinity on recovery of water flooding with low salinity

HUANG Guangqing   

  1. International Logging Company, Great Wall Drilling Company of CNPC, Beijing 100101, China
  • Received:2018-12-05 Revised:2019-04-29 Online:2019-09-21 Published:2019-09-16

摘要: 低矿化度水驱提高采收率对注入水和地层水的离子组成有一定的要求。在室内砂岩岩心驱替实验的基础上,采用对比的方法,研究了注入水和地层水的离子组成对低矿化度水驱提高采收率的影响。结果表明:在进行三次采油模式下的低矿化度水驱时,地层水中含有二价阳离子Ca2+或Mg2+均可提高采收率,且Ca2+的效果要好于Mg2+;只有注入水的矿化度低于油藏油水系统低矿化度效应启动阈值时,采收率才会提高。分析实验结果确定,地层水中含有二价阳离子Ca2+或Mg2+,以及注入水的矿化度低于由油藏油水系统决定的矿化度阈值,是实现低矿化度水驱提高采收率的必要条件。

关键词: 低矿化度水驱, 二价阳离子, 提高采收率, 矿化度阈值

Abstract: The implementation of water flooding with low salinity for EOR has certain requirements for the ion composition of injected water and formation water. Based on the laboratory sandstone core displacement experiment,the effect of ion composition of injected water and formation water on enhanced oil recovery by water flooding with low salinity was studied by contrast method. The results show that the formation water containing divalent cations Ca2+ or Mg2+ can improve oil recovery,and the effect of Ca2+ is better than that of Mg2+. Only when the salinity of injected water is lower than the salinity threshold determined by the oil-water system can the recovery be improved. Final determination of formation water containing bivalent cations Ca2+ or Mg2+,and the salinity of injected water need to be lower than the salinity threshold determined by reservoir oil-water system,is the necessary condition to achieve EOR by water flooding with low salinity.

Key words: water flooding with low-salinity, divalent cation, enhanced oil recovery, salinity threshold

中图分类号: 

  • TE341
[1] 张鑫君,于乐丹.低矿化度水驱技术机理及适用条件研究.石化技术,2017(2):37. ZHANG X J,YU L D. Study on the mechanism and application conditions of low salinity water flooding technology. Petrochemical Technology,2017(2):37.
[2] 张乐. 注入水矿化度对油藏润湿性的影响. 西部探矿工程, 2013,25(3):43-44. ZHANG L. Influence of injection water salinity on reservoir wettability. West-China Exploration Engineering,2013,25(3):43-44.
[3] 张运来,廖新武,胡勇,等.海上稠油油田高含水期开发模式研究.岩性油气藏,2018,30(4):120-126. ZHANG Y L,LIAO X W,HU Y,et al. Study on development model of offshore heavy oil field in high watercut period. Lithologic Reservoirs,2018,30(4):120-126.
[4] LAGER A,WEBB K J,BLACK C J J,et al. Low salinity oil recovery:an experimental investigation. Petrophysics,2008,49(1):28-35.
[5] 于成龙,李慧敏,赵敏,等.水驱油田井网加密合理井数的计算方法研究.岩性油气藏,2011,23(1):111-113. YU C L,LI H M,ZHAO M,et al. Study on calculation method of reasonable well number for well pattern infilling in water drive oilfield. Lithologic Reservoirs,2011,23(1):111-113.
[6] 胡永乐,王燕灵,杨思玉,等.注水油田高含水后期开发技术方针的调整.石油学报,2004,25(5):65-69. HU Y L,WANG Y L,YANG S Y,et al. Adjustment of technical guidelines for development of waterflooding oilfield in late stage of high water cut. Acta Petrolei Sinica,2004,25(5):65-69.
[7] 聂海峰,董立全,董伟,等.堡子湾耿43井区长4+5段开发调整方案设计及优选.岩性油气藏,2011,23(3):129-132. NIE H F,DONG L Q,DONG W,et al. Design and optimum selection of development and adjustment scheme for 4+5 section of Geng 43 well area in Baoziwan. Lithologic Reservoirs, 2011,23(3):129-132.
[8] 刘瑞果,王为民,苏进昌.歧口18-1油田晚期注水研究.岩性油气藏,2009,21(1):116-119. LIU R G,WANG W M,SU J C. Adjustment of technical guidelines for development of water flooding oilfield in late stage of high water cut. Lithologic Reservoirs,2009,21(1):116-119.
[9] 王道富,付金华,雷启鸿,等.鄂尔多斯盆地低渗透油气田勘探开发技术与展望.岩性油气藏,2007,19(3):126-130. WANG D F,FU J H,LEI Q H,et al. Exploration and development technology and prospect of low permeability oil and gas fields in Ordos Basin. Lithologic Reservoirs,2007,19(3):126-130.
[10] 李书恒,赵继勇,崔攀峰,等.超低渗透储层开发技术对策.岩性油气藏,2008,20(3):128-131. LI S H,ZHAO J Y,CUI P F,et al. Technical countermeasures for ultra-low permeability reservoir development. Lithologic Reservoirs,2008,20(3):128-131.
[11] 王平,姜瑞忠,王公昌,等.低矿化度水驱研究进展及展望.岩性油气藏,2012,24(2):106-110. WANG P,JIANG R Z,WANG G C,et al. Research progress and prospect of low salinity water flooding. Lithologic Reservoirs,2012,24(2):106-110.
[12] 李海涛,李颖,李亚辉,等.低盐度注水提高碳酸盐岩油藏采收率.岩性油气藏,2016,28(2):119-126. LI H T,LI Y,LI Y H,et al. Low salinity water injection improves recovery of carbonate reservoirs. Lithologic reservoirs,2016,28(2):119-126.
[13] ZHANG Y,XIE X,MORROW N R. Waterflood performance by injection of brine with different salinity for reservoir cores. SPE 109849,2007.
[14] LIGTHELM D J,GRONSVELD J,HOFMAN J P,et al. Novel water flooding strategy by manipulation of injection brine composition. SPE 119835,2009.
[15] ALADASANI A,BAI B J,WU Y S. Investigating low-salinity water flooding recovery mechanisms in sandstone reservoirs. SPE 152997,2012.
[16] ARNARSON T S,Keil R G. Mechanisms of pore water organic matter adsorption to montmorillonite. Marine Chemistry,2000, 71(3):309-320.
[17] AUSTADT,REZAEIDOUSTA,PUNTERVOLDT. Chemical mechanism of low salinity water flooding in sandstone reservoirs. SPE 129767,2010.
[18] MCGUIRE P L,CHATHAM J R,PASKVAN F K,et al. Low salinity oil recovery:an exciting new EOR opportunity for Alaska's North Slope. SPE 93903,2005.
[19] AKSULU H,HAMSO D,STRAND S,et al. Evaluation of lowsalinity enhanced oil recovery effects in sandstone:Effects of the temperature and pH gradient. Energy and Fuels,2012,26(6):3497-3503.
[20] ZEINIJAHROMI A,LEMON P,BEDRIKOVETSKY P. Effects of induced migration of fines on water cut during water flooding. SPE 139239,2011.
[21] NASRALLA R A,NASR-EI-DIN H A. Core flood study of low salinity water injection in sandstone reservoirs. SPE 149077,2011.
[22] PU H,XIE X,YIN P,et al. Low salinity water flooding and mineral dissolution. SPE 134042,2010.
[23] NASRALLA R A,BATAWEEL M A,NASR-EI-DIN H A. Investigation of wettability alteration by low salinity water in sandstone rock. SPE 146322,2011.
[1] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
[2] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
[3] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[4] 韩培慧, 闫坤, 曹瑞波, 高淑玲, 佟卉. 聚驱后油层提高采收率驱油方法[J]. 岩性油气藏, 2019, 31(2): 143-150.
[5] 刘晨, 王凯, 王业飞, 周文胜. 针对A油田的抗温、抗盐聚合物/表面活性剂二元复合驱油体系研究[J]. 岩性油气藏, 2017, 29(3): 152-158.
[6] 李海涛,李 颖,李亚辉,王 科. 低盐度注水提高碳酸盐岩油藏采收率[J]. 岩性油气藏, 2016, 28(2): 119-126.
[7] 李 军,张军华,谭明友,崔世凌,曲志鹏,于景强. CO2驱油及其地震监测技术的国内外研究现状[J]. 岩性油气藏, 2016, 28(1): 128-134.
[8] 汤明光,刘清华,张贵才,陈立峰. 抗垢碱提高稠油采收率机理研究[J]. 岩性油气藏, 2014, 26(3): 125-130.
[9] 叶安平,郭平,王绍平,程忠钊,简瑞. 利用PR 状态方程确定CO2 驱最小混相压力[J]. 岩性油气藏, 2012, 24(6): 125-128.
[10] 王秋语. 国外高含水砂岩油田提高水驱采收率技术进展[J]. 岩性油气藏, 2012, 24(3): 123-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .