岩性油气藏 ›› 2014, Vol. 26 ›› Issue (3): 125–130.doi: 10.3969/j.issn.1673-8926.2014.03.021

• 油气田开发 • 上一篇    

抗垢碱提高稠油采收率机理研究

汤明光1,刘清华1,张贵才2,陈立峰2   

  1. 1.中海石油(中国)有限公司湛江分公司,广东 湛江 524057; 2.中国石油大学(华东) 石油工程学院,山东 青岛 266580
  • 出版日期:2014-06-06 发布日期:2014-06-06
  • 第一作者:汤明光(1986-),男,硕士,主要从事油田化学与提高采收率方面的研究工作。 地址:(524057)广东省湛江市坡头区中海油湛江分公司研究院商业楼。 E-mail:tangguang119@163.com。
  • 基金资助:

    国家自然科学基金项目“化学驱油体系油水界面流变性及其对毛管数模型作用机制研究”(编号:51104170)与霍英东教育基金会 资助项目“稠油油藏表面活性剂驱技术研究”(编号:114016)联合资助

Study on enhancing heavy oil recovery mechanism of antiscaling alkali

TANG Mingguang1, LIU Qinghua1, ZHANG Guicai2, CHEN Lifeng2   

  1. 1. Zhanjiang Branch of CNOOC Ltd., Zhanjiang 524057, Guangdong, China; 2. College of Petroleum Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • Online:2014-06-06 Published:2014-06-06

摘要:

针对胜利油田夏八区块稠油油藏地层水钙镁离子浓度高,使用常规碱剂如氢氧化钠和碳酸钠等 进行驱油均会产生结垢问题,开展了具有抗垢作用的驱油用碱研究。 选用具有良好耐垢性能的偏硼酸钠 (NaBO2)进行了室内研究,并使用填砂管驱替实验评价了其驱油效果。 结果表明:虽然 NaBO2溶液降低油 水界面张力的效果不好,但其驱油效果较好。 驱替过程中,在较高的碱溶液浓度下出现了大的压差响应, 且提高采收率的幅度随着碱溶液浓度的增加而增大。 NaBO2溶液提高稠油采收率的微观机理为:碱溶液 易侵入原油中并形成分散液滴,这些液滴随即转变为 W/O 型乳状液,封堵高渗流通道,抑制黏性指进,从 而提高波及系数。

关键词: 低渗透, 成岩作用, 非均质性, 鄂尔多斯盆地

Abstract:

The content of calcium and magnesium ions in the formation water in Xiaba block is relatively high, so scaling problem will occur when use conventional alkali agent such as sodium hydroxide and sodium carbonate. This paper investigated the alkaline which has antiscaling effect, and chose NaBO2 which has strong chelating capacity for calcium and magnesium ions to do indoor research and used sandpacks to evaluate its displacement efficiency. The results show that although the dynamic interfacial tension is high, the displacement efficiency during the sandpacks tests is good. During the displacement process, a large differential pressure response appeared when the alkali concentration is high, and the incremental oil recovery increased with the increase of alkali concentration. Microscopic mechanism shows that the alkaline solution penetrates into the crude oil to form water drops inside the oil phase, and those water drops turn into W/O emulsions subsequently, which could block the water channel and inhibit the viscous fingering, leading to the improvement of sweep efficiency.

Key words:  , low permeability; diagenesis; heterogeneity; Ordos Basin

[1] Wang J,Dong M. A laboratory study of polymer flooding for improving heavy oil recovery[C]. Petroleum Society’s 8th Canadian International Petroleum Conference,Calgary,Albert,2007:178.
[2] Selby R,Alikhan A A,Farouq Ali S M. Potential of non-thermal methods for heavy oil recovery[J]. Journal of Canadian Petroleum Technology,1989,28(4):45- 59.
[3] 车洪昌,任耀宇,刘汉平,等.龙虎泡油田活性水驱油室内实验研究[J].岩性油气藏,2011,23(2):128-132.
[4] Almalik M S,Attia A M,Jang L K. Effects of alkaline flooding on the recovery of Safaniya crude oil of Saudi Arabia[J]. Journal of Petroleum Science and Engineering,1997,17(3/4):367-372.
[5] Turksoy U,Bagci S. Improved oil recovery using alkaline solutions in limestone medium [J]. Journal of Petroleum Science and Engineering,2000,26(1):105-119.
[6] 窦立荣,侯读杰,程顶胜,等.高酸值原油的成因与分布[J].石油学报,2007,28(1):8-13.
[7] Pei H,Zhang G,Ge J,et al. Potential of alkaline flooding to enhance heavy oil recovery through water-in-oil emulsification[J]. Fuel,2013,104:284-293.
[8] Arhuoma M,Yang D,Dong M,et al. Determination of increase in pressure drop and oil recovery associated with alkaline flooding for heavy oil reservoirs[C]. Canadian International Petroleum Conference,Calgary,Alberta,2009.
[9] Jennings H Y,Johnson C E,McAuliffe C D. A caustic waterflooding process for heavy oils [J]. Journal of Petroleum Technology,1974,26:1344-1352.
[10] Berger P D,Lee C H. Improved ASP process using organic alkali [R]. SPE 99581,2006.
[11] Flaaten A K,Nguyen Q P,Zhang Jieyuan,et al. ASP Chemical flooding without the need for soft water[R]. SPE 116754,2008.
[12] Zhang Jieyuan,Nguyen Q P,Flaaten A K,et al. Mechanisms of enhanced natural imbibition with novel chemicals[R]. SPE 113453,2009.
[13] 李娜.普通稠油超低界面张力驱油体系研究[D].青岛:中国石油大学(华东),2011.
[14] Zhang H,Dong M,Zhao S. Which one is more important in chemical flooding for enhanced court heavy oil recovery,lowering interfacial tension or reducing water mobility? [J]. Energy Fuels,2010,24 (3):1829-1836.
[15] Pei H,Zhang G,Ge J,et al. Analysis of microscopic displacement mechanisms of alkaline flooding for enhanced heavy-oil recovery[J]. Energy Fuels,2011,25(10):4423-4429.
[1] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[2] 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168.
[3] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[4] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[5] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[6] 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177.
[7] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[8] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[9] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[10] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[11] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
[12] 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区中—晚二叠世构造-沉积环境与原型盆地演化[J]. 岩性油气藏, 2024, 36(1): 32-44.
[13] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
[14] 杜江民, 崔子豪, 贾志伟, 张毅, 聂万才, 龙鹏宇, 刘泊远. 鄂尔多斯盆地苏里格地区奥陶系马家沟组马五5亚段沉积特征[J]. 岩性油气藏, 2023, 35(5): 37-48.
[15] 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .