岩性油气藏 ›› 2019, Vol. 31 ›› Issue (4): 133–140.doi: 10.12108/yxyqc.20190414

• 油气田开发 • 上一篇    下一篇

基于构型单元“势控论”研究与剩余油开发效果分析

涂乙, 王亚会, 闫正和, 高永明, 魏启任   

  1. 中海石油(中国)有限公司 深圳分公司, 广东 深圳 518067
  • 收稿日期:2019-02-21 修回日期:2019-04-22 出版日期:2019-07-21 发布日期:2019-06-21
  • 作者简介:涂乙(1986-),男,硕士,工程师,主要从事开发地质、储量评价及储层建模等研究工作。地址:(518000)广东省深圳市南山区后海滨路(深圳湾段)3168号中海油大厦A座1404。Email:tuyi200605156@126.com。
  • 基金资助:
    国家科技重大专项"南海东部海域大中型油气田地质特征"(编号:2011ZX05023-006-03)资助

Potential control theory based on configuration unit and remaining oil development effect

TU Yi, WANG Yahui, YAN Zhenghe, GAO Yongming, WEI Qiren   

  1. Shenzhen Branch, CNOOC China Limited, Shenzhen 518067, Guangdong, China
  • Received:2019-02-21 Revised:2019-04-22 Online:2019-07-21 Published:2019-06-21

摘要: 为了研究剩余油的开发效果,综合利用地震、地质、生产动态等资料,将"构型精细解剖"与"势控论"相结合,基于单砂体构型单元进行油水动态运移规律研究,从运移方向和时间角度,预测剩余油运移与聚集规律,构建"运聚再生油藏模式",提出低势闭合区是剩余油挖潜的重点区域。Y油田主力储层夹层少且薄,砂体连片展布,以堆叠接触为主,关停后1 a左右,零散分布的剩余油向低井控、低势能的构造高部位进行运移聚集;非主力储层夹层发育规模大且厚,砂体发育类型包括堆叠、侧叠和孤立型,零散剩余油在纵向上运移受到夹层遮挡,砂体内运移方向受韵律性影响,横向上砂体之间接触类型决定剩余油聚集规模,关停后3 a以上时间,剩余油逐渐向油藏低势闭合区富集成藏。Z9非主力油藏低势闭合区Y1-6 H井平均日产油超过200 m3,含水率低于5%,已稳产4 a;构造高部位Y1-3 H井平均日产油低于60 m3,含水率约75%,现已关停,远低于低势闭合区生产效果,其他非主力油藏低势闭合区剩余油也取得了较好的挖潜效果。Y油田挖潜资料证明了低势闭合区"动态运聚再生油藏模式"的合理性,可为海上中后期老油田剩余油挖潜提供技术支持。

关键词: 构型界面, 势控论, 运移方向, 运移时间, 聚集规律, 挖潜效果

Abstract: In order to study the development effect of remaining oil,by synthetically utilizing seismic,geological and dynamic production data,combining "fine anatomy of configuration" with "potential control theory", the dynamic migration law of oil and water was studied based on single sand body configuration unit,and the migration and accumulation law of remaining oil was predicted from the migration direction and time. The model of migration and accumulation regeneration reservoir was established,and the low potential closed area was put forward as the key area for tapping remaining oil potential. Taking Y oilfield as an example,the main reservoir has few and thin interbeds,and sand bodies are distributed in succession,mainly in stacked contacts. About one year after shutdown,the scattered remaining oil migrated and accumulated to the high parts of low well control and low potential energy structures. The interbeds developed in non-main reservoirs were large and thick. Sand bodies were dominated by stacking and lateral overlapping isolated type. The vertical migration of scattered remaining oil was blocked by interbeds,and the migration direction of sand body was affected by rhythm. Lateral contact types between sand bodies determined the accumulation scale of remaining oil. After shutdown for about 3 years,the remaining oil gradually enriched and formed reservoirs in low-potential closed zones of reservoirs. The average daily oil production of well Y1-6 H in low potential closed zone of Z9 non-main reservoir is over 200 m3,water cut is less than 5%,and the production has been stable for four years. The average daily oil production of well Y1-3 H in high structural position is less than 60 m3,and water cut is about 75%. Now it has been shut down,its production effect is much lower than that of low potential closed zone. The remaining oil of other non-main reservoirs in low potential closed zone has also achieved good potential tapping effect. Potential tapping data prove the rationality of "dynamic migration and accumulation regeneration reservoir model" in low potential closed zone,which can provide technical support for remaining oil tapping in old offshore oilfields in the middle and later stages.

Key words: configuration interface, potential control theory, migration direction, migration time, accumulation law, potential tapping effect

中图分类号: 

  • P618.13
[1] 胡光义,范廷恩,陈飞,等.复合砂体构型理论及其生产应用. 石油与天然气地质,2018,39(1):1-10. HU G Y,FAN T E,CHEN F,et al. Theory of composite sand body architecture and its application to oilfield development. Oil & Gas Geology,2018,39(1):1-10.
[2] 曾祥平.储集层构型研究在油田精细开发中的应用.石油勘探与开发,2010,37(4):483-489. ZENG X P. Application of reservoir structure research in the fine exploitation of oilfields. Petroleum Exploration and Development,2010,37(4):483-489.
[3] 张瑞,刘宗宾,贾晓飞,等. 基于储层构型研究的储层平面非均质性表征. 西南石油大学学报(自然科学版),2018,40(5):15-27. ZHANG R,LIU Z B,JIA X F,et al. Reservoir plane heterogeneity characterization based on reservoir architecture research. Journal of Southwest Petroleum University(Science & Technology Edition),2018,40(5):15-27.
[4] 吴冲龙,林忠民,毛小平,等. "油气成藏模式"的概念、研究现状和发展趋势.石油与天然气地质,2009,12(6):673-682. WU C L,LIN Z M,MAO X P,et al. Concept research status and trend of "Hydrocarbon Pooling Patterns". Oil & Gas Geology,2009,12(6):673-682.
[5] 张运龙,丁峰,尹成.基于地震波形结构属性识别河流相砂体叠置区.石油学报,2018,38(7):792-801. ZHANG Y L,DING F,YIN C. The identification of fluvial sandbody superimposed area based on seismic waveform structure attributes. Acta Petrolei Sinica,2018,38(7):792-801.
[6] 蒲玉国,吴时国,冯延状,等.剩余油"势控论"的初步构建及再生潜力区模式.西安石油大学学报(自然科学版),2005,20(6):7-11. PU Y G,WU S G,FENG Y Z,et al. Preliminary establishment of "the theory of potential controlling remaining oil" and modes of remaining oil regenerating potential area. Journal of Xi'an Shiyou University(Natural Science Edition),2005,20(6):7-11.
[7] 常海燕,严耀祖,陈更新,等.近岸水下扇储层构型及剩余油分布模式:以柴达木盆地七个泉油田E31油藏为例.岩性油气藏,2018,30(3):143-152. CHANG H Y,YAN Y Z,CHEN G X,et al. Reservoir configuration and remaining oil distribution patterns of nearshore subaqueous fan:a case from E31 reservoir in Qigequan Oilfield, Qaidam Basin. Lithologic Reservoirs,2018,30(3):143-152.
[8] 韩大匡.准确预测剩余油相对富集区提高油田注水采收率研究.石油学报,2007,28(2):73-78. HAN D K. Precisely predicting abundant remaining oil and improving the secondary recovery of mature oilfields. Acta Petrolei Sinica,2007,28(2):73-78.
[9] JIAO Y Q,YAN J X,LI S T,et al. Architectural units and heterogeneity of channel reservoirs in the Karamay Formation,outcrop area of Karamay oil field,Junggar Basin,northwest China. AAPG Bulletin,2005,89(4):529-545.
[10] 刘丽. 埕岛油田馆陶组曲流河砂体叠置模式. 岩性油气藏, 2019,31(1):40-48. LIU L. Sandbody superimposed pattern of meandering river facies of Guantao Formation in Chengdao Oilfield. Lithologic Reservoirs,2019,31(1):40-48.
[11] 郭德志,王怀民,李翠玲.储层微型构造形成剩余油的水动力原因.大庆石油地质与开发,2003,22(1):32-34. GUO D Z,WANG H M,LI C L. Hydrodynamic cause for residual oil stagnated in the reservoir micro-structure. Petroleum Geology and Oilfield Development in Daqing,2003,22(1):3234.
[12] 杨有星,金振奎,白忠凯,等.辫状河单河道砂体接触关系及主控因素分析:以新疆克拉玛依,山西柳林、大同和陕西延安辫状河露头为例. 岩性油气藏,2018,30(2):30-38. YANG Y X,JIN Z K,BAI Z K,et al. Contact relationship and main controlling factors of braided river single channel sand body:a case of braided river from Karamay in Xinjiang,Liulin and Datong in Shanxi,Yan'an in Shaanxi. Lithologic Reservoirs,2018,30(2):30-38.
[13] 李志鹏,林承焰,李润泽,等.利用油气势能预测油藏开发后期剩余油富集.特种油气藏,2012,19(2):69-72. LI Z P,LIN C Y,LI R Z,et al. Predict residual oil zones in the late life of oilfield development by hydrocarbon potential. Special Oil and Gas Reserviors,2012,19(2):69-72.
[1] 何康, 张鹏志, 周军良, 甘立琴, 舒晓. 复合曲流带内部构型界面识别新方法及其应用[J]. 岩性油气藏, 2020, 32(4): 126-135.
[2] 童强, 余建国, 田云吉, 胡克来, 杨红梅, 程旭明, 朱玉双. 演武油田Y116井区延8段构型界面约束下的单河道砂体构型[J]. 岩性油气藏, 2020, 32(3): 144-158.
[3] 常海燕, 严耀祖, 陈更新, 郭宁, 项燚伟, 杨会洁. 近岸水下扇储层构型及剩余油分布模式——以柴达木盆地七个泉油田E31油藏为例[J]. 岩性油气藏, 2018, 30(3): 143-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .