岩性油气藏 ›› 2017, Vol. 29 ›› Issue (3): 132139.doi: 10.3969/j.issn.1673-8926.2017.03.016
李岩
LI Yan
摘要: 为了揭示扇三角洲前缘厚层砂体内部复杂结构特征,明确其对开发过程中油水运动的控制作用,以储层构型分析为指导,利用岩心、测井以及生产动态资料,在构型级次识别和划分的基础上,对赵凹油田赵凹区块核桃园组三段Ⅳ3砂层组扇三角洲前缘构型及其控油机理进行了研究。结果表明:研究区发育3类夹层,即泥质夹层、钙质夹层和泥质砂砾岩夹层;将核桃园组三段Ⅳ31厚油层划分为7个5级构型单元;在5级构型单元等时地层格架内,根据单一水下分流河道(或河口坝)的定性、定量识别标准,确定出4级构型单元的规模、空间形态及平面展布规律;建立了基于4级构型的3类储层构型控油模式,其中纵向相变和横向相变控油模式下的剩余油主要分布于水下分流河道中上部和非河道低渗相带内,构型单元内不稳定夹层控油模式下的剩余油主要富集在夹层下部。本次研究对改善油田开发效果具有重要意义。
中图分类号:
[1] MIALL A D. Architectural elements analysis:a new method of facies analysis applied to fluvial deposits. Earth Science Reviews, 1985, 22(2):261-308. [2] 吴胜和.储层表征与建模.北京:石油工业出版社, 2009:136-174. WU S H. Reservoir characterization and modeling. Beijing:Petroleum Industry Press, 2009:136-174. [3] 王珂, 戴俊生, 贾开富, 等.塔河油田1区三叠系储层流动单元研究.岩性油气藏, 2014, 26(3):119-124. WANG K, DAI J S, JIA K F, et al. Research on reservoir flow units of Triassic in block-1, Tahe Oilfield. Lithologic Reservoirs, 2014, 26(3):119-124. [4] 周银邦, 吴胜和, 计秉玉, 等.曲流河储层构型表征研究进展. 地球科学进展, 2011, 26(7):695-702. ZHOU Y B, WU S H, JI B Y, et al. Research progress on the characterization of fluvial reservoir architecture. Advances in Earth Science, 2011, 26(7):695-702. [5] MIALL A D. Architectural elements bounding surfaces in fluvial deposits:anatomy of the Kayenta Formation(Lower Jurassic), Southwest Colorado. Sedimentary Geology, 1988, 55(3/4):233-262. [6] MIALL A D. Hierarchies of architectural units in clastic rocks, and their relationship to sedimentaton rate//MIALL A D, TYLER N. The three-dimensional facies architecture of terrigenous clastic sediments and its implication for hydrocarbon discovery and recovery. Soc Eco Paleontol Mineral Conc Sedimental Paleontol, 1991, 3:6-12. [7] MIALL A D. The geology of fluvial deposits. New York:Springer Verlag, 1996:75-178. [8] MIALL A D. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development:a reality check. AAPG Bulletin, 2006, 90(7):989-1002. [9] 秦国省, 吴胜和, 郑联勇, 等.基于沉积过程的三角洲前缘河口坝储层构型精细分析——以老君庙油田L11小层为例. 岩性油气藏, 2015, 27(6):55-63. QIN G S, WU S H, ZHENG L Y, et al. Detailed architecture analysis of mouth bar in delta front based on sedimentary process:a case study of L11 layer in Laojunmiao Oilfield. Lithologic Reservoirs, 2015, 27(6):55-63. [10] GIBLING M R. Width and thickness of fluvial channel bodies and valley fills in the geological record:a literature compilation and classification. Journal of Sedimentary Research, 2006, 76(5):731-770. [11] 吉鸿杰, 李小燕, 陶辉飞, 等.准噶尔盆地阜东斜坡区侏罗系头屯河组储层孔隙结构特征研究.岩性油气藏, 2016, 28(2):47-55. JI H J, LI X Y, TAO H F, et al. Pore structure characteristics of Jurassic Toutunhe Formation in eastern slope of Fukang Depression, Junggar Basin. Lithologic Reservoirs, 2016, 28(2):47-55. [12] WU S H, YUE D L, LIU J M, et al. Hierarchy modeling of subsurface palaeochannel reservoir architecture. Science in China (Series D):Earth Sciences, 2008, 51(Suppl 2):126-137. [13] 贾珍臻, 林承焰, 董春梅, 等.大庆升平油田葡萄花油层葡一油组浅水三角洲储层构型研究.中国石油大学学报(自然科学版), 2014, 38(6):9-17. JIA Z Z, LIN C Y, DONG C M, et al. Shallow delta reservoir architecture analysis on Putaohua oil formation in Shengping Oilfield. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(6):9-17. [14] 尹太举, 张昌民, 赵红静.地质综合法预测剩余油.地球科学进展, 2006, 21(5):539-544. YIN T J, ZHANG C M, ZHAO H J. Remaining oil prediction based on comprehensive geological analysis methods. Advances in Earth Science, 2006, 21(5):539-544. [15] 林煜, 吴胜和, 岳大力, 等.扇三角洲前缘储层构型精细解剖——以辽河油田曙2-6-6区块杜家台油层为例.天然气地球科学, 2013, 24(2):335-344. LIN Y, WU S H, YUE D L, et al. Fine anatomizing reservoir architecture of fan-delta front:a case study on Dujiatai reservoir in Shu 2-6-6 block, Liaohe Oilfield. Natural Gas Geoscience, 2013, 24(2):335-344. [16] 宋璠, 杨少春, 苏妮娜, 等.扇三角洲前缘储层构型界面划分与识别——以辽河盆地欢喜岭油田锦99区块杜家台油层为例.西安石油大学学报(自然科学版), 2015, 30(1):7-13. SONG P, YANG S C, SU N N, et al. Division and recognition of architecture interfaces of fan delta front reservoir:taking Dujiatai reservoir of Jin-99 block in Huanxiling Oilfield, Liaohe Basin as an example. Journal of Xi'an Shiyou University(Natural Science Edition), 2015, 30(1):7-13. [17] 樊中海, 杨振峰, 张成, 等.高精度层序地层格架在扇三角洲体系储层精细对比中的应用——以泌阳凹陷赵凹油田为例. 地质科技情报, 2005, 24(2):33-38. FAN Z H, YANG Z F, ZHANG C, et al. Application of high resolution sequence stratigraphic framework to detailed correlation of fan delta sandstone reservoirs:a case study from Zhaowa Oilfield of Biyang Depression. Geological Science and Technology Information, 2005, 24(2):33-38. [18] 李少华, 张尚锋, 刘德华.赵凹油田储层地质建模.新疆石油天然气, 2008, 4(1):7-10. LI S H, ZHANG S F, LIU D H. Reservoir modeling in Zhaoao Oilfield. Xinjiang Oil and Gas, 2008, 4(1):7-10. [19] 蒋恕, 王华.泌阳凹陷基于层序地层格架的油气成藏模式.吉林大学学报(地球科学版), 2007, 37(4):744-751. JIANG S, WANG H. The model for reservoir formation within the sequence stratigraphic framework in Biyang Depression. Journal of Jilin University(Earth Science Edition), 2007, 37(4):744-751. [20] 陈程.扇三角洲前缘储层精细地质模型及优化开发调整.北京:中国地质大学(北京), 2002. CHEN C. The detailed geological model of fan delta front reservoir and its application to optimize development. Beijing:China University of Geosciences(Beijing), 2002. [21] 陈程, 孙义梅, 贾爱林.扇三角洲前缘地质知识库的建立及应用.石油学报, 2006, 27(2):53-57. CHEN C, SUN Y M, JIA A L. Development and application of geological knowledge database for fan delta front in the dense spacing area. Acta Petreolei Sinica, 2006, 27(2):53-57. |
[1] | 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14. |
[2] | 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43. |
[3] | 唐述凯, 郭天魁, 王海洋, 陈铭. 致密储层缝内暂堵转向压裂裂缝扩展规律数值模拟[J]. 岩性油气藏, 2024, 36(4): 169-177. |
[4] | 陈国文, 邓志文, 姜太亮, 张军勇, 于雪娇, 祁成业, 郗晓萍. 纵横波联合解释技术在气云区的应用[J]. 岩性油气藏, 2019, 31(6): 79-87. |
[5] | 蒋廷学, 王海涛, 卞晓冰, 李洪春, 刘建坤, 吴春方, 周林波. 水平井体积压裂技术研究与应用[J]. 岩性油气藏, 2018, 30(3): 1-11. |
[6] | 刁瑞, 吴国忱, 崔庆辉, 尚新民, 芮拥军. 地面阵列式微地震监测关键技术研究[J]. 岩性油气藏, 2017, 29(1): 104-109. |
[7] | 桂志先,朱广生. 微震监测研究进展[J]. 岩性油气藏, 2015, 27(4): 68-76. |
[8] | 严向阳,胡永全,李 楠,申贝贝. 泥页岩地层破裂压力计算模型研究[J]. 岩性油气藏, 2015, 27(2): 109-113. |
[9] | 张小龙,张同伟,李艳芳,闫建萍,张铭杰,胡沛青. 页岩气勘探和开发进展综述[J]. 岩性油气藏, 2013, 25(2): 116-122. |
|