岩性油气藏 ›› 2017, Vol. 29 ›› Issue (3): 126–131.doi: 10.3969/j.issn.1673-8926.2017.03.015

• 技术方法 • 上一篇    下一篇

基于应力-应变曲线形态的致密气储层脆性研究

张杰1, 张超谟1,2, 张占松1,2, 张冲1,2, 聂昕1,2   

  1. 1. 长江大学 地球物理与石油资源学院, 武汉 430100;
    2. 长江大学 油气资源与勘探技术教育部重点实验室, 湖北 荆州 434023
  • 收稿日期:2016-12-13 修回日期:2017-02-09 出版日期:2017-05-21 发布日期:2017-05-21
  • 作者简介:张杰(1992-),男,长江大学在读硕士研究生,研究方向为地球物理测井综合解释。地址:(430100)湖北省武汉市蔡甸区大学路特一号长江大学武汉校区。Email:iamshuimuchanggong@163.com。
  • 基金资助:
    国家杰出青年科学基金项目“致密气储层岩石导电机理研究及饱和度评价”(编号:41404084)和湖北省自然科学青年基金项目“基于等效岩石单元模型的渗透率测井评价方法研究”(编号:2013CFB396)联合资助

Brittleness of tight gas reservoirs based on stress-strain curves

ZHANG Jie1, ZHANG Chaomo1,2, ZHANG Zhansong1,2, ZHANG Chong1,2, NIE Xin1,2   

  1. 1. Geophysics and Oil Resource Institute, Yangtze University, Wuhan 430100, China;
    2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Jingzhou 434023, Hubei, China
  • Received:2016-12-13 Revised:2017-02-09 Online:2017-05-21 Published:2017-05-21

摘要: 岩石的脆性研究对致密气的勘探开发具有重要意义。储层岩石脆性越高,压裂后裂缝越发育,产能越高。以鄂尔多斯盆地东北部二叠系致密气储层为研究对象,通过研究脆性岩石的单轴压裂起裂机制,以单轴压裂曲线的起裂点和峰值点的应力与应变为基础,结合多种脆性计算公式,建立了新的脆性指数计算模型。研究表明:利用新模型计算的脆性指数与基于静态岩石力学参数计算的脆性指数具有很明显的函数关系,可以有效表征研究区岩石的脆性;基于单轴抗压实验的压裂效果,利用新建立的脆性指数和初裂点指数可以有效地建立储层的压裂效果划分标准。该研究成果丰富了储层脆性计算的方法,建立了新的脆性评价标准。

关键词: 岩石物理相-流动单元, 特低渗透油藏, 优质储层, 测井响应特征, 定量评价

Abstract: The brittleness of rocks is one of the most important parameters in tight gas exploration and development. The higher the reservoir rock brittleness is, the more fracturing fracture develops, and the higher the production capacity will be. A variety of brittleness calculation formulas were used to establish a new calculation model of brittleness index of the Permian tight gas reservoir in northeastern Ordos Basin by researching the uniaxial compression crack mechanism of brittle rock, and the stress and strain of the first crack point and the peak under uniaxial compression. The results show that the brittleness index calculated by the new model can characterize the brittleness of the rocks effectively, because it has obvious function relationship with the brittleness calculated by static rock mechanics parameters in the experiments. Based on the fracturing effect in uniaxial compressive experiments, the new brittleness index and the initial crack point index could be used to establish the standard of reservoir fracturing effect. This result enriches the reservoir brittleness calculation method, and sets a new standard of brittleness evaluation.

Key words: petrophysical facies-flow unit, ultra-low permeability reservoir, high quality reservoirs, logging response characteristics, quantitative evaluation

中图分类号: 

  • TU45
[1] 闫建平, 温丹妮, 司马立强, 等.基于测井和录井信息相结合的泥页岩储层识别方法——以苏北盆地高邮凹陷阜宁组为例.岩性油气藏, 2015, 27(4):89-95. YAN J P, WEN D N, SIMA L Q, et al. Identification method of shale reservoir based on well logging and log information. Lithologic Reservoirs, 2015, 27(4):89-95.
[2] 张小龙, 张同伟, 李艳芳, 等.页岩气勘探和开发进展综述.岩性油气藏, 2013, 25(2):116-122. ZHANG X L, ZHANG T W, LI Y F, et al. Research advance in exploration and development of shale gas. Lithologic Reservoirs, 2013, 25(2):116-122.
[3] JESSEV H. Glossary of geology and related sciences. Washington D. C:American Geological Institute, 1960:99-102.
[4] 闫建平, 言语, 司马立强, 等.泥页岩储层裂缝特征及其与"五性"之间的关系.岩性油藏, 2015, 27(3):87-93. YAN J P, YAN Y, SIMA L Q, et al. Relationship between fracture characteristics and "five-property" of shale reservoir. Lithologic Reservoirs, 2015, 27(3):87-93.
[5] HONDA H, SANADA Y. Hardness of coal. Fuel, 1956, 35(4):451.
[6] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:the Mississippian Barnett Shale of northcentral Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 2007, 91(4):475-499.
[7] HUCKA V, DAS B. Brittleness determination of rocks by different methods. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(10):389-392.
[8] RICKMAN R, MULLEN M, PORTER E, et al. A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett Shale. SPE 115258, 2008.
[9] 王宇, 李晓, 武艳芳, 等.脆性岩石起裂应力水平与脆性指标关系探讨. 岩石力学与工程学报, 2014, 33(2):264-275. WANG Y, LI X, WU Y F, et al. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2):264-275.
[10] AUBERTIN M, GILL D E, SIMON R. On the use of the brittleness index modified(BIM)to estimate the post peak behavior or rocks. The 1st North American Rock Mechanics Symposium. Rotterdam:A. A. Balkema Press, 1994:945-952.
[11] ANDREEV G E. Brittle failure of rock materials:test results and constitutive models. Netherlands:A. A. Balkema Press, 1995:123-127.
[12] HAJIABDOLAMJID V, KAISER P. Brittleness of rock and stability assessment in hard rock tunneling. Tunnelling and Underground Space Technology, 2003, 18(1):35-48.
[13] ALTINDAG R. The correlation of specific energy with rock brittleness concept on rock cutting. Journal of the South African Institute of Mining and Metallurgy, 2003, 103(3):163-171.
[14] 周辉, 孟凡震, 卢景景, 等.硬岩裂纹起裂强度和损伤强度取值方法探讨. 岩土力学, 2014, 35(4):913-918. ZHOU H, MENG F Z, LU J J, et al. Discussion on methods for calculating crack initiation strength and crack damage strength for hard rock. Rock and Soil Mechanics, 2014, 35(4):913-918.
[1] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[2] 徐子煜, 王安, 韩长城, 田继军, 张军生, 刘磊, 张楠. 玛湖地区三叠系克拉玛依组优质砂砾岩储层形成机制[J]. 岩性油气藏, 2020, 32(3): 82-92.
[3] 杨帆, 刘立峰, 冉启全, 孔金平, 黄苏琦, 黄昌武. 四川盆地磨溪地区灯四段风化壳岩溶储层特征[J]. 岩性油气藏, 2020, 32(2): 43-53.
[4] 张意超, 陈民锋, 屈丹, 毛梅芬, 杨子由. X油田特低渗透油藏井网加密效果预测方法[J]. 岩性油气藏, 2020, 32(1): 144-151.
[5] 王伟, 吴奎, 何京, 张金辉, 沈洪涛. 锦州25-1油田优质储层地震响应特征与定量预测[J]. 岩性油气藏, 2018, 30(3): 100-111.
[6] 殷代印, 项俊辉, 王东琪. 大庆油田长垣外围特低渗透扶杨油层综合分类[J]. 岩性油气藏, 2018, 30(1): 150-154.
[7] 刘曦翔, 张哨楠, 杨鹏, 张咏梅, 何昊. 龙凤山地区营城组深层优质储层形成机理[J]. 岩性油气藏, 2017, 29(2): 117-124.
[8] 周游, 李治平, 景成, 谷潇雨, 孙威, 李晓. 基于“岩石物理相-流动单元”测井响应定量评价特低渗透油藏优质储层——以延长油田东部油区长6油层组为例[J]. 岩性油气藏, 2017, 29(1): 116-123.
[9] 柴 毓,王贵文. 致密砂岩储层岩石物理相分类与优质储层预测—— — 以川中安岳地区须二段储层为例[J]. 岩性油气藏, 2016, 28(3): 74-85.
[10] 王 维,张英波,杨香华,王清斌,朱红涛. 黄河口凹陷 BZ-A-1 井区沙河街组“甜点”特征及成因机制[J]. 岩性油气藏, 2015, 27(5): 45-52.
[11] 闫建平, 言 语, 司马立强, 温丹妮, 温新房, 耿 斌 . 泥页岩储层裂缝特征及其与“五性”之间的关系[J]. 岩性油气藏, 2015, 27(3): 87-93.
[12] 陶艳忠,蒋裕强,王猛,张春,李正勇,刘枢. 遂宁—蓬溪地区须二段储层成岩作用与孔隙演化[J]. 岩性油气藏, 2014, 26(1): 58-66.
[13] 廖然. 黄骅坳陷沧东凹陷孔二段成岩作用特征及定量评价[J]. 岩性油气藏, 2013, 25(3): 28-35.
[14] 张新顺,王建平,李亚晶,吴红烛. 断层封闭性研究方法评述[J]. 岩性油气藏, 2013, 25(2): 123-128.
[15] 石玉江,李长喜,李高仁,李霞,周金昱,郭浩鹏. 特低渗透油藏源储配置与富集区优选测井评价方法[J]. 岩性油气藏, 2012, 24(4): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .