岩性油气藏 ›› 2017, Vol. 29 ›› Issue (1): 116123.doi: 10.3969/j.issn.1673-8926.2017.01.015
周游1,2, 李治平1,2, 景成3, 谷潇雨3, 孙威4, 李晓3
ZHOU You1,2, LI Zhiping1,2, JING Cheng3, GU Xiaoyu3, SUN Wei4, LI Xiao3
摘要: 岩石物理相和流动单元均可从不同角度表征储层的非均质性,鄂尔多斯盆地东部地区特低渗透储层非均质性极强,单独利用岩石物理相或流动单元对该地区进行储层评价会存在一定偏差。通过定性识别和定量划分,建立了“岩石物理相-流动单元”定量综合评价指标体系,并提出利用这一体系来定量评价优质储层。研究结果表明:一类、二类“岩石物理相-流动单元”具有较好的储集性能和渗流结构,由其圈定的近期可开发或评价后可开发的优质储层共49 个,从而确定了含油甜点区的分布规律和延展方向。这一研究成果能兼顾岩石物理相对于油气富集的控制作用和流动单元的流动特性,可有效减小单独利用岩石物理相或流动单元筛选优质储层所造成的误差,现场应用效果较好,为研究区增储上产提供了有利井位和区域。
中图分类号:
[1] 付金华,魏新善,任军峰,等. 鄂尔多斯盆地天然气勘探形势 与发展前景.石油学报,2006,27(6):1-4. FU J H,WEI X S,REN J F,et al. Gas exploration and developing prospect in Ordos Basin. Acta Petrolei Sinica,2006,27(6): 1-4. [2] 何辉,宋新民,蒋有伟,等. 砂砾岩储层非均质性及其对剩余 油分布的影响——以克拉玛依油田二中西区八道湾组为例. 岩性油气藏,2012,24(2):117-123. HE H,SONG X M,JIANG Y W,et al. Heterogeneity of sandy conglomerate reservoir and its influence on remaining oil distribution: A case study from Badaowan Formation in the midwest of block Ⅱ in Karamay Oilfield. Lithologic Reservoirs, 2012,24(2):117-123. [3] 王月莲,宋新民. 按流动单元建立测井储集层解释模型. 石油 勘探与开发,2002,29(3):53-55. WANG Y L,SONG X M. New method for well log interpretation by single fluid flow unit. Petroleum Exploration and Development, 2002,29(3):53-55. [4] 董春梅,林承焰,赵海朋,等. 基于流动单元的测井储层参数 解释模型.测井技术,2006,30(5):425-428. DONG C M,LIN C Y,ZHAO H P,et al. Model of well logging reservoir parameters interpretation based on flow units. Well Logging Technology,2006,30(5):425-428. [5] 曾少军,何胜林,王利娟,等. 基于流动单元的测井储层参数 精细建模技术.天然气工业,2011,31(8):12-15. ZENG S J,HE S L,WANG L J,et al.Well logging reservoir parameter elaboration modelling technology based on flow unit. Natural Gas Industry,2011,31(8):12-15. [6] 谭成仟,段爱英. 基于岩石物理相的储层渗透率解释模型研 究.测井技术,2001,25(4):287-290. TAN C Q,DUAN A Y. On the permeability models based on the petrophysical facie. Well Logging Technology,2001,25(4): 287-290. [7] 宋子齐,杨红刚,孙颖,等. 利用岩石物理相分类研究特低渗 透储层参数建模. 断块油气田,2010,17(6):672-677. SONG Z Q,YANG H G,SUN Y,et al. Study on parametric modeling of ultra-low permeability reservoir with petrophysical facies classification. Fault- Block Oil and Gas Field,2010,17 (6):672-677. [8] 景成,宋子齐,蒲春生,等. 基于岩石物理相分类确定致密气 储层渗透率——以苏里格东区致密气储层渗透率研究为例. 地球物理学进展,2013,28(6):3222-3230. JING C,SONG Z Q,Pu C S,et al. Refined permeability of tight gas reservoir based on petrophysical facies classification: Taking the study of tight gas reservoir permeability in the eastern of Sulige for an example. Progress in Geophysics,2013,28(6): 3222-3230. [9] 赖锦,王贵文,罗官幸,等. 基于岩石物理相约束的致密砂岩 气储层渗透率解释建模. 地球物理学进展,2014,29(3):1173- 1182. LAI J,WANG G W,LUO G X,et al. Tight sandstone gas permeability interpretation modeling controlled by petrophysical facies. Progress in Geophysics,2014,29(3):1173-1182. [10] 宋子齐,唐长久,刘晓娟,等. 利用岩石物理相“甜点”筛选特 低渗透储层含油有利区.石油学报,2008,29(5):711-716. SONG Z Q,TANG C J,LIU X J,et al. Determination of favorable oi-l bearing areas with extra low-permeability reservoir by “dessert”of petro-physical facies. Acta Petrolei Sinica,2008,29 (5):711-716. [11] 张吉,张烈辉,陈军,等. 岔河集油田岔39 块流动单元系统聚 类划分及特征分析.河南石油,2004,18(6):33-36. ZHANG J,ZHANG L H,CHEN J,et al. Systematic clustering classfication and feature analysis of flow units in cha 39 block in Chaheji Oilfield. Henan Petroleum,2004,18(6):33-36. [12] 王奇,祝敏荣. 模糊聚类分析在储层流动单元研究中的应用. 石油化工应用,2009,28(5):55-57. WANG Q,ZHU M R. Application of fuzzy clustering analysis to study on reservoir flow unit. Petrochemical Industry Application, 2009,28(5):55-57. [13] 岳大力,吴胜和,林承焰. 碎屑岩储层流动单元研究进展. 中 国科技论文在线,2008,3(11):810-817. YUE D L,WU S H,LIN C Y. Research progress in flow unit of clastic reservoir. Sciencepaper Online,2008,3(11):810-817. [14] 宋子齐. 测井多参数的地质应用. 西安,西北大学出版社, 1993:110-140. SONG Z Q. Geological application of logging multi-parameter. Xi'an:Northwestern University Press,1993:110-140. [15] 景成,蒲春生,周游,等. 基于成岩储集相测井响应特征定量 评价致密气藏相对优质储层——以SULG东区致密气藏盒8 上段成岩储集相为例. 天然气地球科学,2014,25(5):657- 664. JING C,PU C S,ZHOU Y,et al. Quantitatively evaluating relatively beneficial reservoir of tight gas reservoirs based on diagenetic reservoir facies log response feature:Taking the diagenetic reservoir facies classification of the He 8-1 in the tight gas reservoir of SULG east area for an example. Natural Gas Geoscience, 2014,25(5):657-664. [16] 宋子齐,杨立雷,王宏,等. 灰色系统储层流动单元综合评价 方法. 大庆石油地质与开发,2007,26(3):76-81. SONG Z Q,YANG L L,WANG H,et al. Comprehensive evaluation method of reservoir flow unit with grey system. Petroleum Geology and Oilfield Development In Daqing,2007,26 (3):76-81. [17] 宋子齐,王建功. 储层定量评价指标和权系数研究. 测井技 术,1997,21(5):351-355. SONG Z Q,WANG J G. A Study on quantitative reservoir evaluation norms and weight coefficient. Logging Technology, 1997,21(5):351-355. |
[1] | 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22. |
[2] | 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55. |
[3] | 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76. |
[4] | 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65. |
[5] | 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. |
[6] | 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44. |
[7] | 尹路, 李博, 齐雯, 孙东, 乐幸福, 马慧. 天然氢气规模生成的成因类型与成藏特点[J]. 岩性油气藏, 2024, 36(6): 1-11. |
[8] | 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88. |
[9] | 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121. |
[10] | 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134. |
[11] | 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159. |
[12] | 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168. |
[13] | 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180. |
[14] | 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35. |
[15] | 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188. |
|