岩性油气藏 ›› 2022, Vol. 34 ›› Issue (4): 159–170.doi: 10.12108/yxyqc.20220415

• 石油工程与油气田开发 • 上一篇    

辫状河砂岩储层三维地质模型重构技术——以冀东油田高尚堡区块新近系馆陶组为例

刘阳平1, 吴博然1, 于忠良1, 余成林1, 王立鑫2, 尹艳树2   

  1. 1. 中国石油冀东油田分公司 勘探开发研究院, 河北 唐山 063200;
    2. 长江大学 地球科学学院, 武汉 430100
  • 收稿日期:2021-08-09 修回日期:2022-02-21 出版日期:2022-07-01 发布日期:2022-07-07
  • 通讯作者: 尹艳树(1978-),男,博士,教授,主要从事油藏描述与储集层建模方面的教学与科研工作。Email:yys@yangtzeu.edu.cn。 E-mail:yys@yangtzeu.edu.cn
  • 作者简介:刘阳平(1981-),男,硕士,工程师,主要从事油气田开发地质方面的工作。地址:(063200)河北省唐山市路北区51号冀东油田研究院。Email:liuyangping2001@163.com
  • 基金资助:
    国家自然科学基金“多点地质统计学相控地震同时反演方法”(编号:41872178)资助

Reconstruction of 3D geological model of braided river sandstone reservoirs: A case study of Neogene Guantao Formation in Gaoshangpu block,Jidong Oilfield

LIU Yangping1, WU Boran1, YU Zhongliang1, YU Chenglin1, WANG Lixin2, YIN Yanshu2   

  1. 1. Research Institute of Exploration and Development, PetroChina Jidong Oilfield Company, Tangshan 063200, Hebei, China;
    2. School of Geosciences, Yangtze University, Wuhan 430100, China
  • Received:2021-08-09 Revised:2022-02-21 Online:2022-07-01 Published:2022-07-07

摘要: 以冀东油田高尚堡区块新近系馆陶组Ⅳ油组的二维平面相和剖面相为训练图像,利用线性池化方法获得其三维沉积相的多点统计概率,通过蒙特卡洛抽样确定预测点的沉积相类型,建立了研究区辫状河三维精细地质模型,并采用抽稀井网的方法验证了其准确性。研究结果表明:①研究区主力生产层段馆陶组Ⅳ段12和13小层发育心滩、辫状河道与泛滥平原微相。心滩坝呈底平顶凸特征,辫状河道呈顶平底凸特征,河道与心滩规模均较小,宽度一般不超过600 m;辫状河道顶部发育泛滥平原沉积,整体上呈“砂包泥”特征;辫流带宽度为650~1 300 m,心滩平均长度为480 m,平均宽度为176 m,辫状河道平均宽度为71 m。②地质模型刻画出的储层砂体形态和空间分布准确,平面上心滩位置与地质分析结果吻合,心滩中间厚、两翼薄的特征显现;剖面上具有典型的底平顶凸的心滩特征;模型中泥岩相占比的误差为9.8%,心滩相占比的误差为3.4%,河道相占比的误差为6.4%,总体上看,建模误差均小于10.0%。

关键词: 辫状河, 心滩, 多点地质统计, 三维地质模型, 馆陶组, 高尚堡区块, 南堡凹陷, 冀东油田

Abstract: Taking two-dimensional plane facies and profile facies of oil group Ⅳ of Neogene Guantao Formation in Gaoshangpu block of Jidong Oilfield as training images, the multi-point geostatistics probability of three-dimensional sedimentary facies was obtained by linear pooling method,the sedimentary facies types of estimated points were determined by Monte Carlo sampling, the three-dimensional fine geological model of braided river was established,and its accuracy was verified by sparse well pattern method. The results show that:(1)The main production layer in the study area is the fifth member of Guantao Formation,and sublayers 12 and 13 mainly developed channel bar,braided channel and flood plain microfacies. The channel bar is characterized by flat bottom and convex top,and the braided channel is characterized by flat top and convex bottom. The scale of channel and channel bar is small,and the general width is less than 600 m. Flood plain developed at the top of braided channel, which is characterized by sand covered by mud as a whole. The width of braided channel belts is 650-1 300 m, the average length and width of channel bar are 480 m and 176 m respectively, and the average width of braided channel is 71 m.(2)The reservoir sand body shape and spatial distribution were accurately depicted by the geological model. On the plane,the position of the channel bar is consistent with geological analysis results,and the characteristics of the thick center and thin wings of the channel bar were shown. On profile,the channel bar has the characteristics of flat bottom and convex top. In the model,the error of mudstone proportion is 9.8%,the error of channel bar proportion is 3.4%,and the error of channel proportion is 6.4%. As a whole,the modeling error is less than 10.0%.

Key words: braided river, channel bar, multi-point geostatistics, 3D geological model, Guantao Formation, Gaoshangpu block, Nanpu Sag, Jidong Oilfield

中图分类号: 

  • TE122.1
[1] 于兴河, 王德发, 孙志华. 湖泊辫状河三角洲岩相、层序特征及储层地质模型:内蒙古贷岱海湖现代三角洲沉积考察[J]. 沉积学报, 1995, 13(1):48-58. YU Xinghe, WANG Defa, SUN Zhihua. Lithofacies types, vertical profile features and reservoir geological models of braided deltaic sandbodies in faulted lake basin:The observation on deposition of modern deltas in Daihai Lake, Inner Mongolia[J]. Acta Sedimentologica Sinica, 1995, 13(1):48-58.
[2] 张昌民, 尹太举, 赵磊, 等. 辫状河储层内部建筑结构分析[J]. 地质科技情报, 2013, 32(4):7-13. ZHANG Changmin, YIN Taiju, ZHAO Lei, et al. Reservoir architectural analysis of braided channel[J]. Geological Science and Technology Information, 2013, 32(4):7-13.
[3] 张金亮. 河流沉积相类型及相模式[J]. 新疆石油地质, 2019, 40(2):244-252. ZHANG Jinliang. Fluvial facies styles and their sedimentary facies models[J]. Xinjiang Petroleum Geology, 2019, 40(2):244-252.
[4] 李易隆, 贾爱林, 冀光, 等. 鄂尔多斯盆地中-东部下石盒子组八段辫状河储层构型[J]. 石油学报, 2018, 39(9):1037- 1050. LI Yilong, JIA Ailin, JI Guang, et al. Reservoir architecture of braided river in member 8 of Xiashihezi Formation,centraleastern Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(9):1037-1050.
[5] 印森林, 吴胜和, 陈恭洋, 等. 基于砂砾质辫状河沉积露头隔夹层研究[J]. 西南石油大学学报(自然科学版), 2014, 36(4):29-36. YIN Senlin, WU Shenghe, CHEN Gongyang, et al. A study on intercalation of sand-gravel braided river deposit based on outcrop section[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(4):29-36.
[6] 张可, 吴胜和, 冯文杰, 等. 砂质辫状河心滩坝的发育演化过程探讨:沉积数值模拟与现代沉积分析启示[J]. 沉积学报, 2018, 36(1):81-91. ZHANG Ke, WU Shenghe, FENG Wenjie, et al. Discussion on evolution of bar in sandy braided river:Insights from sediment numerical simulation and modern bar[J]. Acta Sedimentologica Sinica, 2018, 36(1):81-91.
[7] 秦国省, 吴胜和, 宋新民, 等. 远源细粒辫状河三角洲沉积特征与单砂体构型分析[J]. 中国石油大学学报(自然科学版), 2017, 41(6):9-19. QIN Guosheng, WU Shenghe, SONG Xinmin, et al. Sedimentary characteristics of distal fine-grain braided delta and architecture analysis of single sand body[J]. Journal of China University of Petroleum(Edition of Natural Sciences), 2017, 41(6):9-19.
[8] 秦国省, 胡文瑞, 宋新民, 等. 砾质辫状河构型及隔夹层分布特征:以准噶尔盆地西北缘八道湾组露头为例[J]. 中国矿业大学学报, 2018, 47(5):1008-1020. QIN Guosheng, HU Wenrui, SONG Xinmin, et al. Gravel braided river architecture and inter-layers distribution:A case study of Jurassic Badaowan Formation outcrop in the northwest of Junggar Basin[J]. Journal of China University of Mining & Technology, 2018, 47(5):1008-1020.
[9] 李顺明, 宋新民, 蒋有伟, 等. 高尚堡油田砂质辫状河储集层构型与剩余油分布[J]. 石油勘探与开发, 2011, 38(4):474- 482. LI Shunming, SONG Xinmin, JIANG Youwei, et al. Architecture and remaining oil distribution of the sandy braided river reservoir in the Gaoshangpu Oilfield[J]. Petroleum Exploration and Development, 2011, 38(4):474-482.
[10] 徐东齐, 孙致学, 任宇飞, 等. 基于地质知识库的辫状河致密储层地质建模[J]. 断块油气田, 2018, 25(1):57-61. XU Dongqi, SUN Zhixue, REN Yufei, et al. Geological modeling of braided river tight reservoir based on geological knowledge database[J]. Fault-Block Oil & Gas Field, 2018, 25(1):57-61.
[11] 尹艳树, 张昌民, 尹太举, 等. 萨尔图油田辫状河储层三维层次建模[J]. 西南石油大学学报(自然科学版), 2012, 34(1):13-18. YIN Yanshu, ZHANG Changmin, YIN Taiju, et al. 3D hierarchical modeling of the braided channel reservoir of Saertu Oilfield[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(1):13-18.
[12] 周祺, 郑荣才, 王华, 等. 长北气田辫状河三角洲单砂体时空建模[J]. 大庆石油地质与开发, 2008, 27(5):10-13. ZHOU Qi, ZHENG Rongcai, WANG Hua, et al. Time-space simulation on braid river delta single sand-body of Changbei gas field[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(5):10-13.
[13] 印森林, 吴胜和, 冯文杰, 等. 基于辫状河露头剖面的变差函数分析与模拟[J]. 中南大学学报(自然科学版), 2013, 44(12):4988-4994. YIN Senlin, WU Shenghe, FENG Wenjie, et al. Variogram analysis and simulation on sedimentary outcrop profile of braided river[J]. Journal of Central South University(Science and Technology), 2013, 44(12):4988-4994.
[14] 郑剑锋, 沈安江, 乔占峰. 基于数字露头的三维地质建模技术:以塔里木盆地一间房剖面一间房组礁滩复合体为例[J]. 岩性油气藏, 2015, 27(5):108-115. ZHENG Jianfeng, SHEN Anjiang, QIAO Zhanfeng. 3D geologic modeling technology based on digital outcrop:A case study of reef-shoal body of Yijianfang Formation in Yijianfang outcrop, Tarim Basin[J]. Lithologic Reservoirs, 2015, 27(5):108-115.
[15] 吴胜和, 李宇鹏. 储层地质建模的现状与展望[J]. 海相油气地质, 2007, 12(3):53-60. WU Shenghe, LI Yupeng. Reservoir modeling:Current situation and development prospect[J]. Marine Origin Petroleum Geology, 2007, 12(3):53-60.
[16] 李少华, 卢昌盛, 何维领, 等. 一种基于目标的非贯穿型河道建模方法[J]. 天然气地球科学, 2019, 30(3):305-311. LI Shaohua, LU Changsheng, HE Weiling, et al. An objectbased modeling method for channels not across through interesting area[J]. Natural Gas Geoscience, 2019, 30(3):305-311.
[17] 杨特波, 王继平, 王一, 等. 基于地质知识库的致密砂岩气藏储层建模:以苏里格气田苏X区块为例[J]. 岩性油气藏, 2017, 29(4):138-145. YANG Tebo, WANG Jiping, WANG Yi, et al. Reservoir modeling of tight sandstone gas reservoir based on geological knowledge database:A case from Su X block in Sulige gas field[J]. Lithologic Reservoirs, 2017, 29(4):138-145.
[18] OKABE H, BLUNT M J. Pore space reconstruction using multiple-point statistics[J]. Journal of Petroleum Science and Engineering, 2005, 46(1/2):121-137.
[19] 张挺, 卢德唐, 李道伦. 基于二维图像和多点统计方法的多孔介质三维重构研究[J]. 中国科学技术大学学报, 2010, 40(3):271-277. ZHANG Ting, LU Detang, LI Daolun. A method of reconstruction of porous media using a two-dimensional image and multiplepoint statistics[J]. Journal of University of Science and Technology of China, 2010, 40(3):271-277.
[20] COMUNIAN A, RENARD P, STRAUBHAAR J. 3 D multiplepoint statistics simulation using 2D training images[J]. Computers & Geosciences, 2012, 40(3):49-65.
[21] CHEN Qiyu, MARIETHOZ G, LIU Gang, et al. Locality-based 3D multiple-point statistics reconstruction using 2-D geological cross-sections[J]. Hydrology and Earth System Sciences Discussions, 2018, 22(12):6547-6566.
[22] 王立鑫, 尹艳树, 王晖, 等. 基于自适应空间抽样由二维剖面重构三维地质模型的方法:以加拿大某区块McMurray组储集层为例[J]. 石油勘探与开发, 2021, 48(2):347-359. WANG Lixin, YIN Yanshu, WANG Hui, et al. A method of reconstructing 3D model from 2D geological cross-section based on self-adaptive spatial sampling:A case study of Cretaceous McMurray reservoirs in a block of Canada[J]. Petroleum Exploration and Development, 2021, 48(2):347-359.
[23] 赵其生, 于连忠. 南堡油田南堡1、2号构造馆陶组储层特征研究[J]. 石油天然气学报, 2013, 35(7):38-43. ZHAO Qisheng, YU Lianzhong. Study on reservoir characteristics of Guantao Formation in No.1 and No.2 structures of Nanpu Oilfield[J]. Journal of Oil and Gas Technology, 2013, 35(7):38-43.
[24] 郝杰, 柯友亮, 张永超, 等. 南堡凹陷一号构造带东营组三段下亚段的沉积相与输砂模式[J]. 黑龙江科技大学学报, 2019, 29(1):41-48. HAO Jie, KE Youliang, ZHANG Yongchao, et al. Sedimentary system of lower member 3 of Dongying Formation in No. 1 structural belt of Nanpu Sag[J]. Journal of Heilongjiang University of Science and Technology, 2019, 29(1):41-48.
[25] 兰朝利, 何顺利, 门成全. 利用岩心或露头的交错层组厚度预测辫状河河道带宽度:以鄂尔多斯盆地苏里格气田为例[J]. 油气地质与采收率, 2005, 12(2):16-18. LAN Chaoli, HE Shunli, MEN Chengquan. Prediction of braided channel belt width based on cross-stratum sets thickness measurements of cores or outcrops:Taking Sulige gas field, Ordos Basin as an example[J]. Petroleum Geology and Recovery Efficiency, 2005, 12(2):16-18.
[26] ALLARD D, COMUNIAN A, RENARD P. Probability aggregation methods in geoscience[J]. Mathematical Geosciences, 2012, 44(5):545-581.
[1] 李晓辉, 杜晓峰, 官大勇, 王志萍, 王启明. 辽东湾坳陷东北部新近系馆陶组辫曲过渡型河流沉积特征[J]. 岩性油气藏, 2022, 34(3): 93-103.
[2] 程丹华, 焦霞蓉, 王建伟, 庄东志, 王政军, 江山. 黄骅坳陷南堡凹陷古近系沙一段页岩油储层特征及油气意义[J]. 岩性油气藏, 2022, 34(3): 70-81.
[3] 田晓平, 张汶, 周连德, 沈孝秀, 郭维. 南堡凹陷二号断裂带古生界碳酸盐岩潜山岩溶模式[J]. 岩性油气藏, 2021, 33(6): 93-101.
[4] 赵小萌, 郭峰, 彭晓霞, 张翠萍, 郭岭, 师宇翔. 鄂尔多斯盆地安边地区延10砂质辫状河相储层特征及主控因素[J]. 岩性油气藏, 2021, 33(6): 124-134.
[5] 袁纯, 张惠良, 王波. 大型辫状河三角洲砂体构型与储层特征——以库车坳陷北部阿合组为例[J]. 岩性油气藏, 2020, 32(6): 73-84.
[6] 王航, 杨海风, 黄振, 白冰, 高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例[J]. 岩性油气藏, 2020, 32(5): 73-83.
[7] 任梦怡, 江青春, 刘震, 卢朝进. 南堡凹陷柳赞地区沙三段层序结构及其构造响应[J]. 岩性油气藏, 2020, 32(3): 93-103.
[8] 赵汉卿, 温慧芸, 穆朋飞, 李超, 吴穹螈. 垦利A油田沙三上段近源辫状河三角洲沉积特征[J]. 岩性油气藏, 2019, 31(3): 37-44.
[9] 刘丽. 埕岛油田馆陶组曲流河砂体叠置模式[J]. 岩性油气藏, 2019, 31(1): 40-48.
[10] 张建坤, 吴鑫, 方度, 王方鲁, 高文中, 陈小军. 马头营凸起馆二段窄薄河道砂体地震识别[J]. 岩性油气藏, 2018, 30(6): 89-97.
[11] 杨有星, 金振奎, 白忠凯, 高永进, 韩淼, 张金虎. 辫状河单河道砂体接触关系及主控因素分析——以新疆克拉玛依,山西柳林、大同和陕西延安辫状河露头为例[J]. 岩性油气藏, 2018, 30(2): 30-38.
[12] 崔连可, 单敬福, 李浮萍, 崔璐, 种健. 基于稀疏井网条件下的古辫状河道心滩砂体估算——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2018, 30(1): 155-164.
[13] 杨特波, 王继平, 王一, 付斌, 薛雯, 郝骞. 基于地质知识库的致密砂岩气藏储层建模——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2017, 29(4): 138-145.
[14] 李晨, 樊太亮, 高志前, 钱小会, 傅巍. 冲积扇高分辨率层序地层分析——以辽河坳陷曙一区杜84块SAGD开发区馆陶组为例[J]. 岩性油气藏, 2017, 29(3): 66-75.
[15] 朱筱敏, 董艳蕾, 张明君, 潘荣, 梁官忠, 张久强. 二连盆地洪浩尔舒特凹陷洪10区块精细沉积学研究[J]. 岩性油气藏, 2017, 29(2): 10-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!