岩性油气藏 ›› 2021, Vol. 33 ›› Issue (6): 93–101.doi: 10.12108/yxyqc.20210610

• 油气地质 • 上一篇    

南堡凹陷二号断裂带古生界碳酸盐岩潜山岩溶模式

田晓平, 张汶, 周连德, 沈孝秀, 郭维   

  1. 中海石油 (中国) 有限公司天津分公司, 天津 300459
  • 收稿日期:2021-03-05 修回日期:2021-04-30 发布日期:2021-11-25
  • 作者简介:田晓平(1969-),女,高级工程师,主要从事石油地质方面的研究工作。地址:(300459)天津市滨海新区海川路2121号。Email:tianxp@cnooc.com.cn。
  • 基金资助:
    “十三五”国家科技重大专项“渤海油田高效开发示范工程”(编号:2016ZX05058)资助

Karst model of Paleozoic carbonate buried hill in No. 2 fault zone of Nanpu Sag

TIAN Xiaoping, ZHANG Wen, ZHOU Liande, SHEN Xiaoxiu, GUO Wei   

  1. Tianjin Branch of CNOOC Limited, Tianjin 300459, China
  • Received:2021-03-05 Revised:2021-04-30 Published:2021-11-25

摘要: 南堡凹陷古生界潜山为渤海海域重要的油气勘探和评价目标。为研究该构造二号断裂带古生界碳酸盐岩潜山岩溶模式,通过岩心观察、薄片鉴定、测井分析、构造演化、岩溶演化模式等研究,结合古地貌特征对各区块岩溶模式差异性进行了综合分析。结果表明:①岩溶储层岩性为灰岩和白云岩,具有双重孔隙介质特征,其基质孔隙连通性较差,裂缝在储集空间中起到关键作用。一方面可对微观孔隙进行沟通疏导,另一方面沿裂缝发育的溶蚀孔洞为重要的储集空间。②潜山岩溶储层主要经历了表生期岩溶作用和埋藏期胶结作用,其中表生期岩溶受印支—燕山早期逆冲褶皱作用影响,形成了现今构造格局和断裂系统,控制了岩溶储层的发育和分布,但燕山中晚期—喜山期的埋藏胶结为岩溶储层形成过程中的破坏作用,主要表现为地表水和地层水对早先形成的缝洞储集空间进行充填。③岩溶作用强度受古地貌和断裂控制。根据古地貌形态及岩溶作用强度划出岩溶高地、岩溶斜坡区和岩溶洼地,各区块间及同区块内岩溶储层发育程度差异主要是离断层远近、古地貌位置高低和斜坡陡缓的原因造成的。其中靠近断裂的古地貌斜坡缓坡带岩溶作用最强,保存条件最好,岩溶储层最为发育,为油气勘探的有利目标。该研究成果对碳酸盐岩潜山的油气勘探具有指导意义。

关键词: 古地貌, 岩溶模式, 碳酸盐岩潜山, 古生界, 南堡凹陷

Abstract: The Paleozoic buried hill in Nanpu Sag is an important target for oil and gas exploration and evaluation in Bohai Sea. In order to study the karst model of Paleozoic carbonate buried hill in No.2 fault zone of Nanpu Sag, based on core observation, thin section identification, logging analysis, structural evolution, karst evolution model, combined with paleogeomorphology characteristics, the differences of karst models in each block were comprehensively analyzed. The results show that: (1) the lithology of karst reservoir is limestone and dolomite, with the characteristics of dual pore medium. The connectivity of matrix pores is poor, and fractures play a key role in the reservoir space. They can communicate and dredge the micropores and dissolved pores developed along the fractures are important reservoir spaces. (2) The buried hill karst reservoir mainly experienced supergene karstification and burial cementation. The supergene karstification was affected by the Indosinian-Early Yanshanian thrust folding, forming the current structural pattern and fault system, controlling the development and distribution of karst reservoir. On the other hand, the burial cementation in the Middle-Late Yanshanian-Himalayan period is mainly manifested as the filling of the fracture cavity reservoir space formed earlier by surface water and formation water, which is the destructive effect in the process of karst reservoir formation. The intensity of karstification is controlled by paleogeomorphology and faults. According to the paleogeomorphic morphology and karstification intensity, karst Highlands, karst slope areas and karst depressions are divided. The differences in the development degree of karst reservoirs between different blocks and within the same block are mainly caused by the distance to the fault, the position of paleogeomorphology and the steep and gentle slope. (3) The intensity of karstification is controlled by paleogeomorphology and faults. According to the morphology of paleogeomorphology and the intensity of karstification, karst highlands, karst slope areas and karst depressions are divided. The differences in the development degree of karst reservoirs among the blocks are mainly caused by the location of paleogeomorphology and the steep and gentle slope. The gentle slope zone of paleogeomorphology near the faults has the strongest karstification, the best preservation conditions and the most developed karst reservoir, which is a favorable target for oil and gas exploration in the study area. The research results can provide reference for oil and gas exploration in carbonate buried hill.

Key words: paleogeomorphology, karst model, carbonate buried hill, Paleozoic, Nanpu Sag

中图分类号: 

  • TE122.1
[1] 李阳, 金强, 钟建华, 等. 塔河油田奥陶系岩溶分带及缝洞结构特征. 石油学报, 2016, 37(3):289-298. LI Y, JIN Q, ZHONG J H, et al. Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe Oilfield, Tarim Basin. Acta Petrolei Sinica, 2016, 37(3):289-298.
[2] 乔桂林, 钱一雄, 曹自成, 等. 塔里木盆地玉北地区奥陶系鹰山组储层特征及岩溶模式.石油实验地质, 2014, 36(4):416-421. QIAO G L, QIAN Y X, CAO Z C, et al. Reservoir characteristics and karst model of Ordovician Yingshan Formation in Yubei area, Tarim Basin. Petroleum Geology & Experiment, 2014, 36(4):416-421.
[3] 张亚, 陈双玲, 张晓丽, 等. 四川盆地茅口组岩溶古地貌刻画及油气勘探意义. 岩性油气藏, 2020, 32(3):44-55. ZHANG Y, CHEN S L, ZHANG X L, et al. Restoration of paleokarst geomorphology of Lower Permian Maokou Formation and its petroleum exploration implication in Sichuan Basin. Lithologic Reservoirs, 2020, 32(3):44-55.
[4] 黄芸, 杨德相, 李玉帮, 等. 冀中坳陷杨税务奥陶系深潜山储层特征及主控因素. 岩性油气藏, 2021, 33(2):70-80. HUANG Y, YANG D X, LI Y B, et al. Reservoir characteristics and main controlling factors of Ordovician Yangshuiwu deep buried hill in Jizhong Depression. Lithologic Reservoirs, 2021, 33(2):70-80.
[5] 兰光志, 江同文, 张廷山, 等. 碳酸盐岩古岩溶储层模式及其特征. 天然气工业, 1996, 16(6):13-17. LAN G Z, JIANG T W, ZHANG T S, et al. Carbonate rock palaeokarst reservoir mode and its characteristics. Natural Gas Industry, 1996, 16(6):13-17.
[6] 王振宇, 李凌, 谭秀成, 等. 塔里木盆地奥陶系碳酸盐岩古岩溶类型识别. 西南石油大学学报, 2008, 30(5):11-16. WANG Z Y, LI L, TAN X C, et al. Types and recognizable indicators of Ordovician carbonate rock karstification in Tarim Basin. Journal of Southwest Petroleum University, 2008, 30(5):11-16.
[7] 王军杰, 王旭, 郑海亮, 等. 靖边气田下古储层岩溶作用差异性分析. 石油化工应用, 2012, 31(7):38-40. WANG J J, WANG X, ZHENG H L, et al. Difference analysis of karstification in lower paleo reservoir of Jingbian Gas Field. Petrochemical Industry Application, 2012, 31(7):38-40.
[8] 胡明义, 付晓树, 蔡全升, 等. 塔北哈拉哈塘地区奥陶系鹰山组-一间房组岩溶储层特征及成因模式. 中国地质, 2014, 41(5):1476-1486. HU M Y, FU X S, CAI Q S, et al. Characteristics and genetic model of karst reservoirs of Ordovician Yingshan-Yijianfang Formation in Halahatang area, northern Tarim Basin. Geology in China, 2014, 41(5):1476-1486.
[9] 李定龙, 贾疏源. 威远构造阳新灰岩岩溶隙洞系统发育演化特征. 石油与天然气地质, 1994, 15(2):151-157. LI D L, JIA S Y. Development and evolution of karst fissurecave system in Yangxin series, Weiyuan structure. Oil & Gas Geology, 1994, 15(2):151-157.
[10] 金振奎, 邹元龙, 蒋春雷, 等. 大港探区奥陶系岩溶储层发育分布控制因素. 沉积学报, 2001, 19(4):530-535. JIN Z K, ZOU Y L, JIANG C L, et al. Distribution and controlling factors of Ordovician karst reservoirs in Dagang region. Acta Sedimentologica Sinica, 2001, 19(4):530-535.
[11] 张仲培, 刘仕林, 杨子玉, 等. 塔里木盆地麦盖提斜坡构造演化及油气地质意义.石油与天然气地质, 2011, 32(6):909-918. ZHANG Z P, LIU S L, YANG Z Y, et al. Tectonic evolution and its petroleum geological significances of the Maigaiti slop, Tarim Basin. Oil & Gas Geology, 2011, 32(6):909-918.
[12] 李阳, 范智慧. 塔河奥陶系碳酸盐岩油藏缝洞系统发育模式与分布规律. 石油学报, 2011, 32(1):101-106. LI Y, FAN Z H. Developmental pattern and distribution rule of the fracture-cavity system of Ordovician carbonate reservoirs in the Tahe Oilfield. Acta Petrolei Sinica, 2011, 32(1):101-106.
[13] 侯方浩, 方少仙, 董兆雄, 等. 鄂尔多斯盆地中奥陶统马家沟组沉积环境与岩相发育特征.沉积学报, 2003, 21(1):106-112. HOU F H, FANG S X, DONG Z X, et al. The developmental characters of sedimentary environments and lithofacies of Middle Ordovician Majiagou Formation in Ordos Basin. Acta Sedimentologica Sinica, 2003, 21(1):106-112.
[14] 罗晓彤, 文华国, 彭才, 等. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分. 岩性油气藏, 2020, 32(3):68-81. LUO X T, WEN H G, PENG C, et al. Sedimentary characteristics and high-precision sequence division of lacustrine carbonate rocks of BV Formation in L oilfield of Santos Basin, Brazil. Lithologic Reservoirs, 2020, 32(3):68-81.
[15] 王起琮, 赵淑萍, 魏钦廉, 等. 鄂尔多斯盆地中奥陶统马家沟组海相碳酸盐岩储集层特征.古地理学报, 2012, 14(2):229-242. WANG Q C, ZHAO S P, WEI Q L, et al. Marine carbonate reservoir characteristics of the Middle Ordovician Majiagou Formation in Ordos Basin. Journal of Palaeogeography, 2012, 14(2):229-242.
[16] 张家政, 陈松龄, 成永生, 等. 南堡凹陷周边凸起地区碳酸盐岩成岩作用与孔隙演化.石油天然气学报, 2008, 30(2):161-165. ZHANG J Z, CHEN S L, CHENG Y S, et al. Carbonate diagenesis and porosity evolution in adjacent arch of Nanpu Depression. Journal of Oil and Gas Technology, 2008, 30(2):161-165.
[17] 张宝民, 刘静江. 中国岩溶储集层分类与特征及相关的理论问题. 石油勘探与开发, 2009, 36(1):12-28. ZHANG B M, LIU J J. Classification and characteristics of karst reservoirs in China and related theories. Petroleum Exploration and Development, 2009, 36(1):12-28.
[18] 赵莉莉, 郑恒科, 万维, 等. 南堡凹陷古近纪古湖泊学研究. 特种油气藏, 2013, 20(5):57-61. ZHAO L L, ZHENG H K, WAN W, et al. Research on Paleogene paleolimnology in Nanpu Sag. Special Oil & Gas Reservoirs, 2013, 20(5):57-61.
[19] 达丽亚, 张新涛, 徐春强, 等. 渤海海域奥陶系碳酸盐岩岩溶储层特征及主控因素:以石臼坨凸起427构造带为例. 中国海上油气, 2019, 31(4):36-45. DA L Y, ZHANG X T, XU C Q, et al. Characteristics and controlling factors of Ordovician karst reservoirs in Bohai sea:A case study of 427 tectonic belt in Shijiutuo uplift. China Offshore Oil and Gas, 2019, 31(4):36-45.
[20] 汪泽成, 赵文智, 胡素云, 等. 我国海相碳酸盐岩大油气田油气藏类型及分布特征.石油与天然气地质, 2013, 34(2):153-160. WANG Z C, ZHAO W Z, HU S Y, et al. Reservoir types and distribution characteristics of large marine carbonate oil and gas fields in China. Oil & Gas Geology, 2013, 34(2):153-160.
[21] 雷川, 陈红汉, 苏奥, 等. 方解石充填物对于深层古岩溶洞穴保存的独特意义:以塔河地区奥陶系为例. 沉积学报, 2016, 34(5):842-852. LEI C, CHEN H H, SU A, et al. Distinctive significance of calcite fillings for preservation of deep buried karst Paleocaves:Taking the Ordovician system in Tahe area for example. Acta Sedimentologica Sinica, 2016, 34(5):842-852.
[22] 陈丽祥, 牛成民, 李慧勇, 等. 渤海湾盆地渤中21-2构造碳酸盐岩储层发育特征及其控制因素. 油气地质与采收率, 2016, 23(2):16-21. CHEN L X, NIU C M, LI H Y, et al. Carbonate reservoir characteristics and its controlling factors in Bozhong 21-2 structure, Bohai Bay Basin. Petroleum Geology and Oil Recovery, 2016, 23(2):16-21.
[23] 赵春明, 张建民, 李祖兵.渤中28-1油田奥陶系碳酸盐岩储层特征及主控因素. 大庆石油地质与开发, 2017, 36(1):27-34. ZHAO C M, ZHANG J M, LI Z B. Characteristics and main controlling factors for the Ordovician carbonate reservoir in Bozhong 28-1 Oilfield. Petroleum Geology & Oilfield Development in Daqing, 2017, 36(1):27-34.
[24] 易定红, 王建功, 石兰亭, 等. 柴达木盆地英西地区E32碳酸盐岩沉积演化特征. 岩性油气藏, 2019, 31(2):46-55. YI D H, WANG J G, SHI L T, et al. Sedimentary evolution characteristics of E 32 carbonate rocks in Yingxi area, Qaidam Basin. Lithologic Reservoirs, 2019, 31(2):46-55.
[25] 肖林萍. 埋藏条件下碳酸盐岩实验室溶蚀作用模拟的热力学模型与地质勘探方向:以陕甘宁盆地下奥陶统马家沟组第五段为例. 岩相古地理, 1997, 17(4):57-70. XIAO L P. Thermodynamic model for experimental simulation of dissolution of the carbonate rocks in the burial environments:An example from the fifth member of the Lower Devonian Majiagou Formation in the Shaanxi-Gansu-Ningxia Basin. Lithofacies Palaeogeography, 1997, 17(4):57-70.
[1] 张汶, 吕世聪, 赵大林, 贾海松, 蔡越钎. 渤海湾盆地西南部古近系滩坝沉积特征及主控因素[J]. 岩性油气藏, 2021, 33(3): 85-94.
[2] 黄华, 袁娟梅, 彭伟, 张亮, 文辉. 江汉盆地古近系潜江组盐湖沉积特征与成藏模式[J]. 岩性油气藏, 2021, 33(2): 9-16.
[3] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[4] 隋立伟. 塔南凹陷古地貌特征对沉积体系和油气分布的影响[J]. 岩性油气藏, 2020, 32(4): 48-58.
[5] 何康, 张鹏志, 周军良, 甘立琴, 舒晓. 复合曲流带内部构型界面识别新方法及其应用[J]. 岩性油气藏, 2020, 32(4): 126-135.
[6] 张亚, 陈双玲, 张晓丽, 张玺华, 谢忱, 陈聪, 杨雨然, 高兆龙. 四川盆地茅口组岩溶古地貌刻画及油气勘探意义[J]. 岩性油气藏, 2020, 32(3): 44-55.
[7] 刘俞佐, 石万忠, 刘凯, 王任, 吴睿. 鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式[J]. 岩性油气藏, 2020, 32(3): 56-67.
[8] 任梦怡, 江青春, 刘震, 卢朝进. 南堡凹陷柳赞地区沙三段层序结构及其构造响应[J]. 岩性油气藏, 2020, 32(3): 93-103.
[9] 田清华, 刘俊, 张晨, 王文胜, 黄丹. 苏里格气田下古生界储层特征及主控因素[J]. 岩性油气藏, 2020, 32(2): 33-42.
[10] 李沛, 张金川, 唐玄, 霍志鹏, 李振, 刘君兰, 李中明. 南华北盆地中牟—温县区块上古生界页岩气吸附特性[J]. 岩性油气藏, 2019, 31(3): 66-75.
[11] 刘为, 杨希冰, 张秀苹, 段亮, 邵远, 郝德峰. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素[J]. 岩性油气藏, 2019, 31(2): 75-82.
[12] 耿晓洁, 林畅松, 吴斌. 古地貌对塔中地区鹰山组岩溶结构及分布的控制作用[J]. 岩性油气藏, 2018, 30(4): 46-55.
[13] 关新, 陈世加, 苏旺, 乐幸福, 张浩然. 四川盆地西北部栖霞组碳酸盐岩储层特征及主控因素[J]. 岩性油气藏, 2018, 30(2): 67-76.
[14] 姜生玲, 汪生秀, 洪克岩, 朱亮亮, 胡晓兰. 渝东北地区下古生界页岩气聚集条件及资源潜力[J]. 岩性油气藏, 2017, 29(5): 11-18.
[15] 武爱俊, 徐建永, 滕彬彬, 肖伶俐, 康波, 李凡异, 印斌浩. “动态物源”精细刻画方法与应用——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2017, 29(4): 55-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!