岩性油气藏 ›› 2021, Vol. 33 ›› Issue (6): 81–92.doi: 10.12108/yxyqc.20210609

• 油气地质 • 上一篇    下一篇

渤中凹陷东营组古沉积环境及烃源岩发育模式

阳宏1,2, 刘成林1,2, 王飞龙3, 汤国民3, 李国雄1,2, 曾晓祥1,2, 吴育平1,2   

  1. 1. 中国石油大学 (北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石油大学 (北京)地球科学学院, 北京 102249;
    3. 中海石油 (中国) 有限公司天津分公司, 天津 300452
  • 收稿日期:2021-07-15 修回日期:2021-08-14 出版日期:2021-12-01 发布日期:2021-11-25
  • 第一作者:阳宏(1998-),男,中国石油大学(北京)在读硕士研究生,主要研究方向为石油地质勘探与油气地球化学。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)。Email:2305591359@qq.com
  • 通信作者: 刘成林(1970-),男,博士,教授,博士生导师,主要从事油气资源评价与非常规油气地质方面的教学与研究工作。Email:liucl@cup.edu.cn。
  • 基金资助:
    国家自然科学基金面上项目“咸化湖盆条件下盐类对地层超压的作用机制研究”(编号:41872127)和中海油天津分公司2020—2022年重大科研计划项目“渤中凹陷东营组烃源岩成源特征、生排烃模式及资源潜力”(编号:CCL2020TJX0NST1266)联合资助

Paleoenvironment and development model of source rocks of Dongying Formation in Bozhong Sag

YANG Hong1,2, LIU Chenglin1,2, WANG Feilong3, TANG Guomin3, LI Guoxiong1,2, ZENG Xiaoxiang1,2, WU Yuping1,2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Tianjin Brach of CNOOC, Tianjin 300452, China
  • Received:2021-07-15 Revised:2021-08-14 Online:2021-12-01 Published:2021-11-25

摘要: 渤中凹陷发育较厚的东营组泥岩烃源岩,为了明确该套烃源岩特征及发育模式,通过对渤中凹陷东营组烃源岩样品进行有机-无机地球化学实验、全岩-黏土和孢粉分析测试,评价了该套烃源岩品质,并综合Sr/Cu,Mn/Fe等20种元素比值以及Pr/Ph、伽马蜡烷指数、环萜烷比值、碳同位素、低等藻类化石含量和孢粉组合,分析了东营组形成时期的古沉积环境和古生产力,并建立了东营组烃源岩发育模式。结果表明:①东营组泥岩以石英、长石为主,碳酸盐矿物含量较低,而黏土矿物含量较高,质量分数为30%;②东三段与东二段下部有机质丰度高,达到成熟—高成熟阶段,有机质类型均以Ⅱ1—Ⅱ2型为主;③东三段—东一段均为温湿古气候,水体盐度逐渐变淡,水深逐渐变浅,由东三段高水深(70.1 m)变为东一段低水深(26.7 m),陆源侵入和水体氧化条件呈现逐渐增强的趋势,古生产力高低依次为东三段(高)、东二段(中)、东一段(低);④高生产力、还原保存条件主导东营组有机质的富集,而古气候、水深、盐度和陆源输入对有机质的富集产生间接影响。

关键词: 烃源岩, 古沉积环境, 发育模式, 东营组, 渤中凹陷

Abstract: The source rocks of Dongying Formation are relatively thick in Bozhong Sag. It is of great significance to clarify the characteristics and development model of this set of source rocks for promoting three-dimensional conventional and unconventional hydrocarbon exploration in deep and shallow layers of Bozhong Sag. Organicinorganic geochemical experiments, whole rock-clay and sporo-pollen analysis tests were carried out on the source rock samples to evaluate the quality of the source rock of Dongying Formation in Bozhong Sag. Combined the ratios of Sr/Cu, Mn/Fe and Pr/Ph, Gammacerane index, cycloterpane ratio, carbon isotope and low algal pollen content, the paleoenvironment and paleo-productivity during the formation of Dongying Formation were analyzed, and a unique source rock development model of Dongying Formation was established. The results show that: (1) The mudstone of Dongying Formation is mainly composed of quartz and feldspar, with low content of carbonate minerals and high content of clay minerals(with a mass fraction of 30%). (2) The organic matter abundance in the lower part of the third and second members of Dongying Formation is high, reaching the maturehigh maturity stage, and the organic matter is mainly Ⅱ1-Ⅱ2 type. (3) The paleoclimate of Dongying Formation is warm and humid, the water salinity gradually becomes lighter, and the water depth gradually becomes shallower, from the high water depth of E3d3(70.1 m) to the low water depth of E3d1(26.7 m). The terrestrial intrusion and water oxidation conditions gradually increase, and the paleo-productivity successively is E3d3(high) > E3d2(middle) > E3d1(low). (4) High productivity and reductive preservation conditions dominate the enrichment of organic matter in Dongying Formation, while paleoclimate, water depth, salinity and terrigenous input have indirect effects on the enrichment of organic matters.

Key words: source rocks, paleoenvironment, development model, Dongying Formation, Bozhong Sag

中图分类号: 

  • TE122.2
[1] HAO F, ZHOU X H, ZHU Y M, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate,Bohai Bay Basin, China. Organic Geochemistry, 2011, 42(4):323-339.
[2] HU T, PANG X Q, JIANG S, et al. Impact of paleosalinity, dilution, redox, and paleoproductivity on organic matter enrichment in a saline lacustrine rift basin:A case study of paleogene organicrich shale in Dongpu depression, Bohai Bay Basin, eastern China. Energy & Fuels, 2018, 32(4):5045-5061.
[3] 刁帆, 邹华耀, 郝芳, 等. 渤海湾盆地廊固凹陷烃源岩特征及其发育模式. 石油与天然气地质, 2014, 35(3):326-335. DIAO F, ZOU H Y, HAO F, et al. Characteristics and depositional models of source rocks in Langgu Sag, Bohai Bay Basin. Oil & Gas Geology, 2014, 35(3):326-335.
[4] 殷杰, 王权, 郝芳, 等. 渤海湾盆地饶阳凹陷沙一下亚段古湖泊环境与烃源岩发育模式. 地球科学, 2017, 42(7):1209-1222. YIN J, WANG Q, HAO F, et al. Palaeolake environment and depositional model of source rocks of the lower submember of Sha 1 in Raoyang Sag, Bohai Bay Basin. Earth Science, 2017, 42(7):1209-1222.
[5] ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 2004, 206(3/4):289-318.
[6] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County,Kansas, U.S. A. Chemical Geology, 1992, 99(1/3):65-82.
[7] PATTERSON J H, RAMSDEN A R, DALE L S, et al. Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chemical Geology, 1986, 55(1/2):1-16.
[8] 高乔, 王兴志, 朱逸青, 等. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素.岩性油气藏, 2019, 31(4):72-84. GAO Q, WANG X Z, ZHU Y Q, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan. Lithologic Reserviors, 2019, 31(4):72-84.
[9] DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis. AAPG Bulletin, 1980, 64(8):1179-1209.
[10] POWELL T G. Petroleum geochemistry and depositional setting of lacustrine source rocks. Marine and Petroleum Geology, 1986, 3(3):119-200.
[11] KATZ B J. Controls on distribution of lacustrine source rocks through time. AAPG Memoir 50, 1990:132-139.
[12] 李龙, 张新涛, 徐春强, 等. 渤中凹陷西洼区新近系油气分布特征及"脊-断"联控成藏模式. 中国海上油气, 2019, 31(4):27-35. LI L, ZHANG X T, XU C Q, et al. Neogene hydrocarbons distribution characteristics and "ridge-fault" joint control accumulation mode in western Bozhong Sag, Bohai sea. China Offshore Oil and Gas, 2019, 31(4):27-35.
[13] 谢玉洪, 张功成, 沈朴, 等. 渤海湾盆地渤中凹陷大气田形成条件与勘探方向. 石油学报, 2018, 39(11):1199-1210. XIE Y H, ZHANG G C, SHEN P, et al. Formation condition and exploration direction of large gas field in Bozhong Sag of Bohai Bay Basin. Acta Petrolei Sinica, 2018, 39(11):1199-1210.
[14] 任拥军, 杜雨佳, 郭潇潇, 等. 渤中凹陷古近系优质烃源岩特征及分布. 油气地质与采收率, 2015, 22(1):5-13. REN Y J, DU Y J, GUO X X, et al. Characteristics and distribution of Paleogene high-quality source rocks in Bozhong Sag. Petroleum Geology and Recovery Efficiency, 2015, 22(1):5-13.
[15] 王翔宇. 渤海湾盆地渤中凹陷渐新统东营组三段烃源岩预测及评价. 武汉:长江大学, 2019. WANG X Y. Prediction and evaluation of the source rocks of the third member of the Oligocene Dongying Formation in the Bozhong Sag, Bohai Bay Basin. Wuhan:Yangtze University, 2019.
[16] 张参, 阳宏, 王飞龙, 等. 渤中凹陷南洼东营组烃源岩有机地球化学特征. 海洋地质前沿, 2020, 36(11):35-44. ZHANG C, YANG H, WANG F L, et al. Organic geochemistry of the source rocks in the Dongying Formation of the south Bozhong subsag. Marine Geology Frontiers, 2020, 36(11):35-44.
[17] 庞雄奇, 郭永华, 姜福杰, 等. 渤海海域优质烃源岩及其分布预测. 石油与天然气地质, 2009, 30(4):393-397. PANG X Q, GUO Y H, JIANG F J, et al. High-quality source rocks and their distribution prediction in the Bohai Sea waters. Oil & Gas Geology, 2009, 30(4):393-397.
[18] 徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 2019, 46(1):25-38. XU C G, YU H B, WANG J, et al. Formation conditions and accumlation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin. Petroleum Exploration and Development, 2019, 46(1):25-38.
[19] 谢玉洪. 渤海湾盆地渤中凹陷太古界潜山气藏BZ19-6的气源条件与成藏模式. 石油实验地质, 2020, 42(5):858-866. XIE Y H. Gas resources and accumulation model of BZ19-6 Archean buried-hill large-scale gas reservior in Bozhong Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 2020, 42(5):858-866.
[20] 王德英, 于娅, 张藜, 等. 渤海海域石臼坨凸起大型岩性油气藏成藏关键要素. 岩性油气藏, 2020, 32(1):1-10. WANG D Y, YU Y, ZHANG L, et al. Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift, Bohai Sea. Lithologic Reserviors, 2020, 32(1):1-10.
[21] 王德英, 薛永安, 于海波, 等. 渤中凹陷斜坡类型与新近系油气成藏特征. 中国海上油气, 2019, 31(4):9-18. WANG D Y, XUE Y A, YU H B, et al. Slop types and Neogene hydrocarbon accumulation characteristics of Bozhong Sag in Bohai Sea. China offshore Oil and Gas, 2019, 31(4):9-18.
[22] 黄志龙, 高岗. 石油地质综合研究方法. 北京:石油工业出版社, 2017. HUANG Z L, GAO G. Comprehensive research method of petroleum geology. Beijing:Petroleum Industry Press, 2017.
[23] 任海鹰, 葛运华. 织纳煤田中寨矿区晚二叠世泥岩地球化学特征及沉积环境意义. 中国煤炭地质, 2016, 28(2):7-10. REN H Y, GE Y H. Late Permian mudstone geochemical features and sedimentary enviorment significance in Zhonghai mine area, Zhina Coalfield. Coal Geology of China, 2016, 28(2):7-10.
[24] MORADI A V, SARI A, AKKAYA P. Geochemistry of the Miocene oil shale(Hanili Formation) in the ankr-orum Basin, Central Turkey:Implications for Paleoclimate conditions, source-area weathering,provenance and tectonic setting. Sedimentary Geology, 2016, 341(15):289-303.
[25] AWAN R S, LIU C L, GONG H W, et al. Paleo-sedimentary environment in relation to enrichment of organic matter of Early Cambrian black rocks of Niutitang Formation from Xiangxi area China. Marine and Petroleum Geology, 2020, 112(1):104057.
[26] FEDO C M, NESBITT H W, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 1995, 23(10):921-924.
[27] 马玉贞, 陶明信, 陈发源. 甘肃窑街寺湾沟-炭洞沟红层孢粉组合、地质时代与生态环境. 沉积学报, 1996, 14(1):93-102. MA Y Z, TAO M X, CHEN F Y. The red sporo-pollrn assemblages, geological age and ecological enviornment from SiwangouTandonggou of Yaojie, Gansu. Acta Sedimentologica Sinica, 1996, 14(1):93-102.
[28] 唐领余, 毛礼米, 吕新苗, 等. 第四纪沉积物中重要蕨类孢子和微体藻类的古生态环境指示意义. 科学通报, 2013, 58(20):1969-1983. TANG L Y, MAO L M, LYU X M, et al. Palaeoecological and palaeoenviormental significance of some important spores and micro-algae in Quaternary deposits. Chinese Science Bulletin. 2013, 58(20):1969-1983.
[29] 魏永峰, 赵志强, 林美英, 等. 西昆仑尖山混杂岩带中硅质岩地球化学特征及沉积环境. 新疆地质, 2016, 34(2):197-203. WEI Y F, ZHAO Z Q, LIN M Y, et al. Geochemical characteristics and sedimentary environment of cherts from Jianshan melange belt in West Kunlun. Xinjiang Geology, 2016, 34(2):197-203.
[30] 周洪瑞. 华北地台南部中新元古界层序地层研究. 北京:地质出版社, 1999. ZHOU H R. Study on stratigraphic characteristics of mesoproterozoic in southern North China Platform. Beijing:Geological Publishing House, 1999.
[31] 吴智平, 周瑶琪. 一种计算沉积速率的新方法:宇宙尘埃特征元素法. 沉积学报, 2000, 18(3):395-399. WU Z P, ZHOU Y Q. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate. Acta Sedimentologica Sinca, 2000, 18(3):395-399.
[32] 范萌萌, 卜军, 赵筱艳, 等. 鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义. 西北大学学报(自然科学版), 2019, 49(4):633-642. FAN M M, BU J, ZHAO X Y, et al. Geochemical characteristics and environmental implications of trace elements of Yanchang Formation in southeastern Ordos Basin. Journal of Norhwest University(Natural Science Edition), 2019, 49(4):633-642.
[33] 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义. 沉积学报, 2017, 35(6):1265-1273. WANG F, LIU X C, DENG X Q, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin. Acta Sedimentologica Sinca, 2017, 35(6):1265-1273.
[34] 毛光周, 刘晓通, 安鹏瑞, 等. 无机地球化学指标在古盐度恢复中的应用及展望. 山东科技大学学报(自然科学版), 2018, 37(1):92-102. MAO G Z, LIU X T, AN P R, et al. Application and outlook of inorganic geochemical indexes in reconstruction of Palaeosalinity. Journal of Shandong University of Science and Technology(Natural Science), 2018, 37(1):92-102.
[35] 李成凤, 肖继风. 用微量元素研究胜利油田东营盆地沙河街组的古盐度. 沉积学报, 1988, 6(4):100-107. LI C F, XIAO J F. The application of trace element to the study on paleosalinities in Shahejie Formation of Dongying Basin Shengli Oilfield. Acta Sedimentologica Sinca, 1998, 6(4):100-107.
[36] PIPER D Z. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chemical Geology, 1994, 114(1/2):95-114.
[37] MURPHY A E, SAGEMAN B B, HOLLANDER D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin:Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography, 2000, 15(3):280-291.
[38] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies:An update. Chemical Geology, 2006, 232(1/2):12-32.
[39] 陈建平, 邓春萍, 宋孚庆, 等. 用生物标志物定量计算混合原油油源的数学模型. 地球化学, 2007, 4(2):205-214. CHEN J P, DENG C H, SONG F Q, et al. Mathenmatical calculating model using biomarkers to quantitatively determine relative source proportion of mixed oils.Geochimica, 2007, 4(2):205-214.
[40] 兰蕾, 李友川, 王柯, 等. 一组有效区分渤中凹陷烃源岩的生物标志化合物参数. 石油学报, 2019, 40(1):35-41.LAN L, LI Y C, WANG K, et al. Biomarker parameters for dffectively distinguishing source rocks in Bozhong Sag. Acta Petrolei Sinica, 2019, 40(1):35-41.
[41] EMERSON S R, HUESTED S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 1991, 34(3/4):177-196.
[42] 李广之, 胡斌, 邓天龙, 等. 微量元素V和Ni的油气地质意义. 天然气地球科学, 2008, 19(1):13-17. LI G Z, HU B, DENG T L, et al. Petroleum geological significance of microelements V and Ni. Natural Gas Geoscience, 2008, 19(1):13-17.
[43] PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide. Beijing:Petroleum Industry Press, 2013.
[44] DEAN W E, GARDNER J V, PIPER D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin. Geochimica et Cosmochimica Acta, 1997, 61(21):4507-4518.
[45] 刘传联, 徐金鲤. 生油古湖泊生产力的估算方法及应用实例. 沉积学报, 2002, 20(1):144-150. LIU C L, XU J L. Estimation method on productivity of oil-producing lake and a case study. Acta Sedimentologica Sinica, 2002, 20(1):144-150.
[46] PUJOL F, BERNER Z, STUBEN D. Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections:Chemostratigraphic constraints. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 240(1/2):120-145.
[47] 尹秀珍. 松辽盆地中部晚白垩世早期古湖泊生产力研究. 北京:中国地质大学(北京), 2008. YIN X Z. Palaeolacustrine peoductivity study of early Late Cretaceous in the central area of Songliao Basin. Beijing:China University of Geosciences(Beijing), 2008.
[48] ALGEO T J, KUWAHARA K, SANO H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography Palaeoclimatology Palaeoecology, 2011, 308(1/2):65-83.
[49] 刘顺喜. 海陆过渡相泥页岩储层特征及其沉积控制机理:以织纳煤田龙潭组为例. 徐州:中国矿业大学(徐州), 2018. LIU S X. Reservoir characteristics and sedimentary control mechanism of the marine-continental transitional mud shale:A case of the Longtan Formation in Zhina Coalfield. Xuzhou:China University of Mining and Technology(CUMT), 2018.
[50] MURRAY R W, LEINEN M, ISERN A R. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean:Evidence for increased productivity during glacial periods. Paleoceanography, 1993, 8(5):651-670.
[51] DYMOND J, COLLIER R. Particulate barium fluxes and their relationships to biological productivity. Deep-Sea Res Ⅱ, 1996, 43(4/6):1283-1308.
[52] PAYTAN A, GRIFFITH E M. Marine barite:Recorder of variations in ocean export productivity. Deep-Sea Research Part Ⅱ, 2007, 54(5/7):687-705.
[53] DEMAISON G J, MOORE G T. Anoxic environments and oil source bed genesis. Organic Geochemistry, 1980, 2(1):9-31.
[54] DOUGLAS W, KIRKLAND, et al. Source-rock potential of evaporitic environment. AAPG Bulletin, 1981, 65(2):181-190.
[55] LATIMER J C, FILIPPELLI G M. Eocene to Miocene terrigenous inputs and export production:geochemical evidence from ODP Leg 177, Site 1090. Palaeogeography Palaeoclimatology Palaeoecology, 2002, 182(3/4):151-164.
[1] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[2] 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134.
[3] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[4] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[5] 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
[6] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[7] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[8] 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55.
[9] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[10] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[11] 董柔, 李坤, 殷际航, 薛煜恒, 江涛, 徐国盛. 渤东凹陷新生代伸展-走滑叠合断裂时空差异演化模式及控藏效应[J]. 岩性油气藏, 2024, 36(3): 106-116.
[12] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[13] 牛成民, 惠冠洲, 杜晓峰, 官大勇, 王冰洁, 王启明, 张宏国. 辽中凹陷西斜坡古近系东三段湖底扇发育模式及大油田发现[J]. 岩性油气藏, 2024, 36(2): 33-42.
[14] 岑永静, 梁锋, 王立恩, 刘倩虞, 张鑫哲, 丁熊. 四川盆地蓬莱—中江地区震旦系灯影组二段成藏特征[J]. 岩性油气藏, 2024, 36(2): 89-98.
[15] 李二庭, 米巨磊, 张宇, 潘越扬, 迪丽达尔·肉孜, 王海静, 高秀伟. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征[J]. 岩性油气藏, 2024, 36(1): 88-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .